
MMSelfSup
Release 1.0.0rc6

MMSelfSup Authors

Apr 06, 2023

GET STARTED

1 Overview 1

2 Get Started 3

3 Pretrain 9

4 Downstream Tasks 31

5 Useful Tools 37

6 Basic Concepts 45

7 Component Customization 65

8 Model Zoo Statistics 79

9 Model Zoo 81

10 BarlowTwins 83

11 BEiT 85

12 BEiT v2 87

13 BYOL 89

14 CAE 93

15 DeepCluster 95

16 DenseCL 97

17 EVA 101

18 MAE 103

19 MaskFeat 105

20 MILAN 107

21 MixMIM 109

22 MoCo v1 111

i

23 MoCo v2 113

24 MoCo v3 117

25 NPID 119

26 ODC 123

27 Relative Location 125

28 Rotation Prediction 129

29 SimCLR 133

30 SimMIM 137

31 SimSiam 139

32 SwAV 143

33 Migration 147

34 mmselfsup.datasets 155

35 mmselfsup.engine 169

36 mmselfsup.evaluation 175

37 mmselfsup.models 177

38 mmselfsup.structures 239

39 mmselfsup.visualization 241

40 mmselfsup.utils 243

41 Contributing to MMSelfSup 247

42 Changelog 249

43 FAQ 263

44 English 265

45 267

46 Indices and tables 269

Python Module Index 271

Index 273

ii

CHAPTER

ONE

OVERVIEW

• Overview

– Introduction of Self-supervised Learning

– Design of MMSelfSup

– Hands-on Roadmap of MMSelfSup

∗ Play with MMSelfSup

∗ Learn SSL with MMSelfSup

In this section, We would like to give a quick review of the open-source library MMSelfSup.

We will first illustrate the basic idea of the self-supervised learning, then we will briefly describe the design of MM-
SelfSup. After that, we will provide a hands-on roadmap to help the users to play with MMSelfSup

1.1 Introduction of Self-supervised Learning

Self-supervised learning(SSL) is a promising learning paradigm, which aims to leverage the potential of the huge
amount of unlabeled data. In SSL, we typically use the label generated automatically without human labor, to learn a
model to extract the discriminative representation of the data. Equipped with the powerful pre-trained model by SSL,
we are able to improve various downstream vision tasks currently.

The community has witnessed rapid development of SSL in the past few years. Our codebase aims to become an easy-
to-use and user-friendly library, to help the research and engineering. We will elaborate the properties and design of
MMSelfSup in the following sections.

1.2 Design of MMSelfSup

MMSelfSup follows the modular designed architecture as other OpenMMLab projects. the overall framework is illus-
trated below:

• Datasets provides the support for various datasets, with many useful augmentation strategy.

• Algorithms consists of many milestone SSL works with easy-to-use interface.

• Tools includes the training and analysis tools for SSL

• Benchmarks introduces many examples of how to use SSL for various downstream tasks(e.g., classification,
detection, segmentation and etc.).

1

https://github.com/open-mmlab/mmselfsup

MMSelfSup, Release 1.0.0rc6

1.3 Hands-on Roadmap of MMSelfSup

To help the user to use the MMSelfSup quickly, we recommend the following roadmap for using our library.

1.3.1 Play with MMSelfSup

Typically, SSL is considered as the pre-training algorithm for various model architectures. Thus, the complete pipeline
consists of the pre-training stage and the benchmark stage.

• For the user who wants to try MMSelfSup with various SSL algorithms. We first refer the user to Get Started
for the environment setup.

• For the pre-training stage, we refer the user to Pre-train for using various SSL algorithms to obtain the pre-trained
model.

• For the benchmark stage, we refer the user to Benchmark for examples and usage of applying the pre-trained
models in many downstream tasks.

• Also, we provide some analysis tools and visualization tools Useful Tools to help diagnose the algorithm.

1.3.2 Learn SSL with MMSelfSup

If you are new to SSL, we recommend using the Model Zoo as a reference to learn the representative SSL algorithms.

2 Chapter 1. Overview

https://mmselfsup.readthedocs.io/en/dev-1.x/user_guides/#downstream-tasks
https://mmselfsup.readthedocs.io/en/dev-1.x/user_guides/#useful-tools

CHAPTER

TWO

GET STARTED

• Get Started

– Prerequisites

– Installation

∗ Best practices

· Install from source

· Install as a Python package

∗ Verify the installation

∗ Customize installation

· Benchmark

· CUDA versions

· Install MMEngine without MIM

· Install MMCV without MIM

· Install on CPU-only platforms

· Install on Google Colab

· Using MMSelfSup with Docker

∗ Trouble shooting

– Using Multiple MMSelfSup Versions

2.1 Prerequisites

In this section, we demonstrate how to prepare an environment with PyTorch.

MMSelfSup works on Linux (Windows and macOS are not officially supported). It requires Python 3.7+, CUDA 9.2+
and PyTorch 1.6+.

Note: If you are experienced with PyTorch and have already installed it, just skip this part and jump to the next
Installation section. Otherwise, you can follow these steps for the preparation.

Step 0. Download and install Miniconda from the official website.

Step 1. Create a conda environment and activate it.

3

https://docs.conda.io/en/latest/miniconda.html

MMSelfSup, Release 1.0.0rc6

conda create --name openmmlab python=3.8 -y
conda activate openmmlab

Step 2. Install PyTorch following official instructions, e.g.

On GPU platforms:

conda install pytorch torchvision -c pytorch

On CPU platforms:

conda install pytorch torchvision cpuonly -c pytorch

2.2 Installation

We recommend users to follow our best practices to install MMSelfSup. However, the whole process is highly cus-
tomizable. See Customize Installation section for more information.

2.2.1 Best practices

Step 0. Install MMEngine and MMCV using MIM.

pip install -U openmim
mim install mmengine
mim install 'mmcv>=2.0.0rc1'

Step 1. Install MMSelfSup.

According to your needs, we support two installation modes:

• Install from source (Recommended): You want to develop your own self-supervised task or new features based
on MMSelfSup framework, e.g., adding new datasets or models. And you can use all tools we provided.

• Install as a Python package: You just want to call MMSelfSup’s APIs or import MMSelfSup’s modules in your
project.

Install from source

In this case, install mmselfsup from source:

git clone https://github.com/open-mmlab/mmselfsup.git
cd mmselfsup
git checkout 1.x
pip install -v -e .
"-v" means verbose, or more output
"-e" means installing a project in editable mode,
thus any local modifications made to the code will take effect without reinstallation.

Optionally, if you want to contribute to MMSelfSup or experience experimental functions, please checkout to the
dev-1.x branch:

git checkout dev-1.x

4 Chapter 2. Get Started

https://pytorch.org/get-started/locally/
https://github.com/open-mmlab/mmengine
https://github.com/open-mmlab/mmcv
https://github.com/open-mmlab/mim
https://github.com/open-mmlab/mmselfsup/blob/main/docs/en/notes/contribution_guide.md

MMSelfSup, Release 1.0.0rc6

Install as a Python package

Just install with pip.

pip install 'mmselfsup>=1.0.0rc0'

2.2.2 Verify the installation

To verify whether MMSelfSup is installed correctly, you can run the following command.

import mmselfsup
print(mmselfsup.__version__)
Example output: 1.0.0rc0 or newer

2.2.3 Customize installation

Benchmark

The Best practices is for basic usage. If you need to evaluate your pre-trained model with some downstream tasks such
as detection or segmentation, please also install MMDetection and MMSegmentation.

If you don’t run MMDetection and MMSegmentation benchmarks, it is unnecessary to install them.

You can simply install MMDetection and MMSegmentation with the following command:

pip install 'mmdet>=3.0.0rc0' 'mmsegmentation>=1.0.0rc0'

For more details, you can check the installation page of MMDetection and MMSegmentation.

CUDA versions

When installing PyTorch, you need to specify the version of CUDA. If you are not clear on which to choose, follow our
recommendations:

• For Ampere-based NVIDIA GPUs, such as GeForce 30 series and NVIDIA A100, CUDA 11 is a must.

• For older NVIDIA GPUs, CUDA 11 is backward compatible, but CUDA 10.2 offers better compatibility and is
more lightweight.

Please make sure the GPU driver satisfies the minimum version requirements. See this table for more information.

Note: Installing CUDA runtime libraries is enough if you follow our best practices, because no CUDA code will be
compiled locally. However if you hope to compile MMCV from source or develop other CUDA operators, you need to
install the complete CUDA toolkit from NVIDIA’s website, and its version should match the CUDA version of PyTorch.
i.e., the specified version of cudatoolkit in conda install command.

2.2. Installation 5

https://github.com/open-mmlab/mmdetection
https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmdetection/blob/main/docs/en/get_started.md
https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/get_started.md
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-major-component-versions__table-cuda-toolkit-driver-versions
https://developer.nvidia.com/cuda-downloads

MMSelfSup, Release 1.0.0rc6

Install MMEngine without MIM

To install MMEngine with pip instead of MIM, please follow MMEngine installation guides.

For example, you can install MMEngine by the following command.

pip install mmengine

Install MMCV without MIM

MMCV contains C++ and CUDA extensions, thus depending on PyTorch in a complex way. MIM solves such depen-
dencies automatically and makes the installation easier. However, it is not a must.

To install MMCV with pip instead of MIM, please follow MMCV installation guides. This requires manually specifying
a find-url based on PyTorch version and its CUDA version.

For example, the following command installs mmcv-full built for PyTorch 1.12.0 and CUDA 11.6.

pip install 'mmcv>=2.0.0rc1' -f https://download.openmmlab.com/mmcv/dist/cu116/torch1.12.
→˓0/index.html

Install on CPU-only platforms

MMSelfSup can be built for CPU only environment. In CPU mode, you can train, test or inference a model.

Some functionalities are gone in this mode, usually GPU-compiled ops. But don’t worry, almost all models in MM-
SelfSup don’t depend on these ops.

Install on Google Colab

Google Colab usually has PyTorch installed, thus we only need to install MMCV and MMSeflSup with the following
commands.

Step 0. Install MMEngine and MMCV using MIM.

!pip3 install openmim
!mim install mmengine
!mim install 'mmcv>=2.0.0rc1'

Step 1. Install MMSelfSup from the source.

!git clone https://github.com/open-mmlab/mmselfsup.git
%cd mmselfsup
!git checkout 1.x
!pip install -e .

Step 2. Verification.

import mmselfsup
print(mmselfsup.__version__)
Example output: 1.0.0rc0 or newer

6 Chapter 2. Get Started

https://github.com/open-mmlab/mmengine/blob/main/docs/zh_cn/get_started/installation.md
https://mmcv.readthedocs.io/en/2.x/get_started/installation.html
https://research.google.com/
https://github.com/open-mmlab/mmengine
https://github.com/open-mmlab/mmcv
https://github.com/open-mmlab/mim

MMSelfSup, Release 1.0.0rc6

Note: Within Jupyter, the exclamation mark ! is used to call external executables and %cd is a magic command to
change the current working directory of Python.

Using MMSelfSup with Docker

We provide a Dockerfile to build an image. Ensure that your docker version >=19.03.

build an image with PyTorch 1.10.0, CUDA 11.3, CUDNN 8.
docker build -f ./docker/Dockerfile --rm -t mmselfsup:torch1.10.0-cuda11.3-cudnn8 .

Important: Make sure you’ve installed the nvidia-container-toolkit.

Run the following command:

docker run --gpus all --shm-size=8g -it -v {DATA_DIR}:/workspace/mmselfsup/data␣
→˓mmselfsup:torch1.10.0-cuda11.3-cudnn8 /bin/bash

{DATA_DIR} is your local folder containing all these datasets.

2.2.4 Trouble shooting

If you have some issues during the installation, please first view the FAQ page. You may open an issue on GitHub if
no solution is found.

2.3 Using Multiple MMSelfSup Versions

If there are more than one mmselfsup on your machine, and you want to use them alternatively, the recommended way
is to create multiple conda environments and use different environments for different versions.

Another way is to insert the following code to the main scripts (train.py, test.py or any other scripts you run)

import os.path as osp
import sys
sys.path.insert(0, osp.join(osp.dirname(osp.abspath(__file__)), '../'))

Or run the following command in the terminal of corresponding root folder to temporally use the current one.

export PYTHONPATH="$(pwd)":$PYTHONPATH

2.3. Using Multiple MMSelfSup Versions 7

https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-cd
https://github.com/open-mmlab/mmselfsup/blob/main/docker/Dockerfile
https://docs.docker.com/engine/install/
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker
https://github.com/open-mmlab/mmselfsup/issues/new/choose

MMSelfSup, Release 1.0.0rc6

8 Chapter 2. Get Started

CHAPTER

THREE

PRETRAIN

3.1 Tutorial 1: Learn about Configs

We incorporate modular and inheritance design into our config system, which is convenient to conduct various exper-
iments. If you wish to inspect the config file, you may run python tools/misc/print_config.py /PATH/TO/
CONFIG to see the complete config. You may also pass --cfg-options xxx.yyy=zzz to see the updated config.

• Tutorial 1: Learn about Configs

– Config File and Checkpoint Naming Convention

∗ Algorithm Information

∗ Module Information

∗ Training Information

∗ Data Information

∗ Config File Name Example

– Config File Structure

– Inherit and Modify Config File

∗ Use Intermediate Variables in Configs

∗ Ignore Some Fields in the Base Configs

∗ Reuse Some Fields in the Base Configs

– Modify Config through Script Arguments

– Import Modules from Other MM-Codebases

3.1.1 Config File and Checkpoint Naming Convention

We follow the convention below to name config files. Contributors are advised to follow the same convention. The
name of config file is divided into four parts: algorithm info, module information, training information
and data information. Logically, different parts are connected with underscore _, and info belonging to the same
part is connected with dash -.

The following example is for illustration:

{algorithm_info}_{module_info}_{training_info}_{data_info}.py

• algorithm_infoAlgorithm information includes the algorithm name, such as simclr, mocov2, etc.

9

MMSelfSup, Release 1.0.0rc6

• module_info Module information denotes backbones, necks, heads and losses.

• training_infoTraining information denotes some training schedules, such as batch size, lr schedule, data
augmentation, etc.

• data_infoData information includes the dataset name, input size, etc.

We detail the naming convention for each part in the name of the config file:

Algorithm Information

{algorithm}-{misc}

algorithm generally denotes the abbreviation for the paper and its version. E.g.:

• relative-loc

• simclr

• mocov2

misc provides some other algorithm-related information. E.g.:

• npid-ensure-neg

• deepcluster-sobel

Note that different words are connected with dash -.

Module Information

{backbone_setting}-{neck_setting}-{head_setting}-{loss_setting}

The module information mainly includes the backbone information. E.g.:

• resnet50

• vit-base-p16

• swin-base

Sometimes, there are some special settings needed to be mentioned in the config name. E.g.:

• resnet50-sobel: In some downstream tasks like linear evaluation, when loading the DeepCluster pre-traiend
model, the backbone only takes 2-channel images after the Sobel layer as input.

Note that neck_setting, head_setting and loss_setting are optional.

Training Information

Training related settingsincluding batch size, lr schedule, data augmentation, etc.

• Batch size: the format is {gpu x batch_per_gpu}e.g., 8xb32.

• Training recipes: they will be arranged in the order {pipeline aug}-{train
aug}-{scheduler}-{epochs}.

E.g.:

• 8xb32-mcrop-2-6-coslr-200e : mcrop is the multi-crop data augmentation proposed in SwAV. 2 and 6 means
that two pipelines output 2 and 6 crops, respectively. The crop size is recorded in data information.

10 Chapter 3. Pretrain

MMSelfSup, Release 1.0.0rc6

• 8xb32-accum16-coslr-200e : accum16 means the weights will be updated after the gradient is accumulated
for 16 iterations.

• 8xb512-amp-coslr-300e : amp denotes the automatic mixed precision training.

Data Information

Data information contains the dataset name, input size, etc. E.g.:

• in1k : ImageNet1k dataset. The input image size is 224x224 by default

• in1k-384 : ImageNet1k dataset with the input image size of 384x384

• in1k-384x224 : ImageNet1k dataset with the input image size of 384x224 (HxW)

• cifar10

• inat18 : iNaturalist2018 dataset. It has 8142 classes.

• places205

Config File Name Example

Here, we give a specific file name to explain the naming convention.

swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96.py

• swav: Algorithm information

• resnet50: Module information.

• 8xb32-mcrop-2-6-coslr-200e: Training information

– 8xb32: Use 8 GPUs in totaland the batch size is 32 per GPU

– mcrop-2-6:Use the multi-crop data augmentation

– coslr: Use the cosine learning rate decay scheduler

– 200e: Train the model for 200 epochs

• in1k-224-96: Data information. The model is trained on ImageNet1k dataset with the input size of 224x224
(for 2 crops) and 96x96 (for 6 crops).

3.1.2 Config File Structure

There are four kinds of basic files in the configs/_base_, namely

• models

• datasets

• schedules

• runtime

All these basic files define the basic elements, such as train/val/test loop and optimizer, to run the experiment. You
can easily build your own training config file by inheriting some base config files. The configs that are composed by
components from _base_ are called primitive.

For easy understanding, we use MoCo v2 as an example and comment the meaning of each line. For more details,
please refer to the API documentation.

3.1. Tutorial 1: Learn about Configs 11

MMSelfSup, Release 1.0.0rc6

The config file configs/selfsup/mocov2/mocov2_resnet50_8xb32-coslr-200e_in1k.py is displayed below.

base = [
'../_base_/models/mocov2.py', # model
'../_base_/datasets/imagenet_mocov2.py', # data
'../_base_/schedules/sgd_coslr-200e_in1k.py', # training schedule
'../_base_/default_runtime.py', # runtime setting

]

only keeps the latest 3 checkpoints
default_hooks = dict(checkpoint=dict(max_keep_ckpts=3))

../_base_/models/mocov2.py is the base configuration file for the model of MoCo v2.

model settings
type='MoCo' specifies we will use the model of MoCo. And we
split the model into four parts, which are backbone, neck, head
and loss. 'queue_len', 'feat_dim' and 'momentum' are required
by MoCo during the training process.
model = dict(

type='MoCo',
queue_len=65536,
feat_dim=128,
momentum=0.999,
data_preprocessor=dict(

mean=(123.675, 116.28, 103.53),
std=(58.395, 57.12, 57.375),
bgr_to_rgb=True),

backbone=dict(
type='ResNet',
depth=50,
in_channels=3,
out_indices=[4], # 0: conv-1, x: stage-x
norm_cfg=dict(type='BN')),

neck=dict(
type='MoCoV2Neck',
in_channels=2048,
hid_channels=2048,
out_channels=128,
with_avg_pool=True),

head=dict(
type='ContrastiveHead',
loss=dict(type='mmcls.CrossEntropyLoss'),
temperature=0.2))

../_base_/datasets/imagenet_mocov2.py is the base configuration file for the dataset of MoCo v2. The config-
uration file specifies the configuration for dataset and dataloader.

dataset settings
We use the ``ImageNet`` dataset implemented by mmclassification, so there
is a ``mmcls`` prefix.
dataset_type = 'mmcls.ImageNet'
data_root = 'data/imagenet/'
Since we use ``ImageNet`` from mmclassification, we need to set the

(continues on next page)

12 Chapter 3. Pretrain

MMSelfSup, Release 1.0.0rc6

(continued from previous page)

custom_imports here.
custom_imports = dict(imports='mmcls.datasets', allow_failed_imports=False)
The difference between mocov2 and mocov1 is the transforms in the pipeline
view_pipeline = [

dict(
type='RandomResizedCrop', size=224, scale=(0.2, 1.), backend='pillow'),

dict(
type='RandomApply',
transforms=[

dict(
type='ColorJitter',
brightness=0.4,
contrast=0.4,
saturation=0.4,
hue=0.1)

],
prob=0.8),

dict(
type='RandomGrayscale',
prob=0.2,
keep_channels=True,
channel_weights=(0.114, 0.587, 0.2989)),

dict(type='RandomGaussianBlur', sigma_min=0.1, sigma_max=2.0, prob=0.5),
dict(type='RandomFlip', prob=0.5),

]

train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='MultiView', num_views=2, transforms=[view_pipeline]),
dict(type='PackSelfSupInputs', meta_keys=['img_path'])

]

train_dataloader = dict(
batch_size=32,
num_workers=8,
drop_last=True,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
collate_fn=dict(type='default_collate'),
dataset=dict(

type=dataset_type,
data_root=data_root,
ann_file='meta/train.txt',
data_prefix=dict(img_path='train/'),
pipeline=train_pipeline))

../_base_/schedules/sgd_coslr-200e_in1k.py is the base configuration file for the training schedules of MoCo
v2.

optimizer
optimizer = dict(type='SGD', lr=0.03, weight_decay=1e-4, momentum=0.9)
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)

(continues on next page)

3.1. Tutorial 1: Learn about Configs 13

MMSelfSup, Release 1.0.0rc6

(continued from previous page)

learning rate scheduler
use cosine learning rate decay here
param_scheduler = [

dict(type='CosineAnnealingLR', T_max=200, by_epoch=True, begin=0, end=200)
]

loop settings
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=200)

../_base_/default_runtime.py contains the default runtime settings. The runtime settings include some basic
components during training, such as default_hooks and log_processor

default_scope = 'mmselfsup'

default_hooks = dict(
runtime_info=dict(type='RuntimeInfoHook'),
timer=dict(type='IterTimerHook'),
logger=dict(type='LoggerHook', interval=50),
param_scheduler=dict(type='ParamSchedulerHook'),
checkpoint=dict(type='CheckpointHook', interval=10),
sampler_seed=dict(type='DistSamplerSeedHook'),

)

env_cfg = dict(
cudnn_benchmark=False,
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
dist_cfg=dict(backend='nccl'),

)

log_processor = dict(
window_size=10,
custom_cfg=[dict(data_src='', method='mean', windows_size='global')])

vis_backends = [dict(type='LocalVisBackend')]
visualizer = dict(

type='SelfSupVisualizer', vis_backends=vis_backends, name='visualizer')
custom_hooks = [dict(type='SelfSupVisualizationHook', interval=1)]

log_level = 'INFO'
load_from = None
resume = False

14 Chapter 3. Pretrain

MMSelfSup, Release 1.0.0rc6

3.1.3 Inherit and Modify Config File

For easy understanding, we recommend contributors to inherit from existing configurations.

For all configs under the same folder, it is recommended to have only one primitive config. All other configs should
inherit from the primitive config. In this way, the maximum of inheritance level is 3.

For example, if your config file is based on MoCo v2 with some other modifications, you can first inherit
the basic configuration of MoCo v2 by specifying _base_ ='./mocov2_resnet50_8xb32-coslr-200e_in1k.
py' (The path relative to your config file), and then modify the necessary fields in your customized con-
fig file. A more specific example, now we want to use almost all configs in configs/selfsup/mocov2/
mocov2_resnet50_8xb32-coslr-200e_in1k.py, except for changing the training epochs from 200 to 800, you
can create a new config file configs/selfsup/mocov2/mocov2_resnet50_8xb32-coslr-800e_in1k.py with
the content as below:

base = './mocov2_resnet50_8xb32-coslr-200e_in1k.py'

learning rate scheduler
param_scheduler = [

dict(type='CosineAnnealingLR', T_max=800, by_epoch=True, begin=0, end=800)
]

runtime settings
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=800)

Use Intermediate Variables in Configs

Some intermediate variables are used in the config file. The intermediate variables make the config file clearer and
easier to modify.

For example, dataset_type, data_root, train_pipeline are the intermediate variables of dataset. We first
need to define them and then pass them into dataset.

dataset settings

Since we use ``ImageNet`` from mmclassification, we need to set the
custom_imports here.
custom_imports = dict(imports='mmcls.datasets', allow_failed_imports=False)

We use the ``ImageNet`` dataset implemented by mmclassification, so there
is a ``mmcls`` prefix.
dataset_type = 'mmcls.ImageNet'
data_root = 'data/imagenet/'

The difference between mocov2 and mocov1 is the transforms in the pipeline
view_pipeline = [

dict(
type='RandomResizedCrop', size=224, scale=(0.2, 1.), backend='pillow'),

dict(
type='RandomApply',
transforms=[

dict(
type='ColorJitter',
brightness=0.4,

(continues on next page)

3.1. Tutorial 1: Learn about Configs 15

MMSelfSup, Release 1.0.0rc6

(continued from previous page)

contrast=0.4,
saturation=0.4,
hue=0.1)

],
prob=0.8),

dict(
type='RandomGrayscale',
prob=0.2,
keep_channels=True,
channel_weights=(0.114, 0.587, 0.2989)),

dict(type='RandomGaussianBlur', sigma_min=0.1, sigma_max=2.0, prob=0.5),
dict(type='RandomFlip', prob=0.5),

]

train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='MultiView', num_views=2, transforms=[view_pipeline]),
dict(type='PackSelfSupInputs', meta_keys=['img_path'])

]

train_dataloader = dict(
batch_size=32,
num_workers=8,
drop_last=True,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
collate_fn=dict(type='default_collate'),
dataset=dict(

type=dataset_type,
data_root=data_root,
ann_file='meta/train.txt',
data_prefix=dict(img_path='train/'),
pipeline=train_pipeline))

Ignore Some Fields in the Base Configs

Sometimes, you may set _delete_=True to ignore some of the fields in base configs. You can refer to mmengine for
more instructions.

The following is an example. If you want to use MoCoV2Neck in SimCLR, directly inheriting and modifying it will
report get unexcepected keyword 'num_layers' error since NonLinearNeck and MoCoV2Neck use different
keywords to construct. In this case, adding _delete_=True would replace all old keys in neck field with new keys:

base = 'simclr_resnet50_8xb32-coslr-200e_in1k.py'

model = dict(
neck=dict(

delete=True,
type='MoCoV2Neck',
in_channels=2048,
hid_channels=2048,

(continues on next page)

16 Chapter 3. Pretrain

https://github.com/open-mmlab/mmengine/blob/main/docs/zh_cn/tutorials/config.md

MMSelfSup, Release 1.0.0rc6

(continued from previous page)

out_channels=128,
with_avg_pool=True))

Reuse Some Fields in the Base Configs

Sometimes, you may reuse some fields in base configs, so as to avoid duplication of variables. You can refer to
mmengine for more instructions.

The following is an example of reusing the num_classes variable in the base config file. Please refer to configs/
selfsup/odc/odc_resnet50_8xb64-steplr-440e_in1k.py for more details.

base = [
'../_base_/models/odc.py',
'../_base_/datasets/imagenet_odc.py',
'../_base_/schedules/sgd_steplr-200e_in1k.py',
'../_base_/default_runtime.py',

]

model settings
model = dict(

head=dict(num_classes={{_base_.num_classes}}),
memory_bank=dict(num_classes={{_base_.num_classes}}),

)

3.1.4 Modify Config through Script Arguments

When using the script tools/train.py/tools/test.py to submit tasks or using some other tools, you can directly
modify the content of the configuration file by specifying the --cfg-options parameter.

• Update config keys of dict chains.

The config options can be specified following the order of the dict keys in the original config. For example,
--cfg-options model.backbone.norm_eval=False changes all BN modules in backbone to train mode.

• Update keys inside a list of configs.

Some config dicts are composed as a list in your config. For example, the training pipeline
data.train.pipeline is normally a list e.g. [dict(type='LoadImageFromFile'),
dict(type='TopDownRandomFlip', flip_prob=0.5), ...]. If you want to change 'flip_prob=0.5'
to 'flip_prob=0.0' in the pipeline, you may specify --cfg-options data.train.pipeline.1.
flip_prob=0.0.

• Update values of list/tuples.

If the value to be updated is a list or a tuple. For example, some config files contain param_scheduler =
"[dict(type='CosineAnnealingLR',T_max=200,by_epoch=True,begin=0,end=200)]". If you want
to change this key, you may specify --cfg-options param_scheduler = "[dict(type='LinearLR',
start_factor=1e-4, by_epoch=True,begin=0,end=40,convert_to_iter_based=True)]". Note
that the quotation mark " is necessary to support list/tuple data types, and that NO white space is allowed inside
the quotation marks for the specified value.

Note:

3.1. Tutorial 1: Learn about Configs 17

https://github.com/open-mmlab/mmengine/blob/main/docs/zh_cn/tutorials/config.md

MMSelfSup, Release 1.0.0rc6

This modification only supports modifying configuration items of string, int, float,␣
→˓boolean, None, list and tuple types.
More specifically, for list and tuple types, the elements inside them must also be one␣
→˓of the above seven types.

3.1.5 Import Modules from Other MM-Codebases

Note: This part may only be used when using other MM-codebase, like mmcls as a third party library to build your
own project, and beginners can skip it.

You may use other MM-codebase to complete your project and create new classes of datasets, models, data enhance-
ments, etc. in the project. In order to streamline the code, you can use MM-codebase as a third-party library, you just
need to keep your own extra code and import your own custom module in the config files. For example, you may refer
to OpenMMLab Algorithm Competition Project .

Add the following code to your own config files:

custom_imports = dict(
imports=['your_dataset_class',

'your_transform_class',
'your_model_class',
'your_module_class'],

allow_failed_imports=False)

3.2 Tutorial 2: Prepare Datasets

MMSelfSup supports multiple datasets. Please follow the corresponding guidelines for data preparation. It is rec-
ommended to symlink your dataset root to $MMSELFSUP/data. If your folder structure is different, you may need to
change the corresponding paths in config files.

• Tutorial 2: Prepare Datasets

– Prepare ImageNet

– Prepare Place205

– Prepare iNaturalist2018

– Prepare PASCAL VOC

– Prepare CIFAR10

– Prepare datasets for detection and segmentation

∗ Detection

∗ Segmentation

mmselfsup
mmselfsup
tools
configs

(continues on next page)

18 Chapter 3. Pretrain

https://github.com/zhangrui-wolf/openmmlab-competition-2021

MMSelfSup, Release 1.0.0rc6

(continued from previous page)

docs
data

imagenet
meta
train
val

places205
meta
train
val

inaturalist2018
meta
train
val

VOCdevkit
VOC2007

cifar
cifar-10-batches-py

3.2.1 Prepare ImageNet

For ImageNet, it has multiple versions, but the most commonly used one is ILSVRC 2012. It can be accessed with the
following steps:

1. Register an account and login to the download page

2. Find download links for ILSVRC2012 and download the following two files

• ILSVRC2012_img_train.tar (~138GB)

• ILSVRC2012_img_val.tar (~6.3GB)

3. Untar the downloaded files

4. Download meta data using this script

3.2.2 Prepare Place205

For Places205, you need to:

1. Register an account and login to the download page

2. Download the resized images and the image list of train set and validation set of Places205

3. Untar the downloaded files

3.2. Tutorial 2: Prepare Datasets 19

http://www.image-net.org/challenges/LSVRC/2012/
http://www.image-net.org/download-images
https://github.com/BVLC/caffe/blob/master/data/ilsvrc12/get_ilsvrc_aux.sh
http://places.csail.mit.edu/downloadData.html

MMSelfSup, Release 1.0.0rc6

3.2.3 Prepare iNaturalist2018

For iNaturalist2018, you need to:

1. Download the training and validation images and annotations from the download page

2. Untar the downloaded files

3. Convert the original json annotation format to the list format using the script tools/dataset_converters/
convert_inaturalist.py

3.2.4 Prepare PASCAL VOC

Assuming that you usually store datasets in $YOUR_DATA_ROOT. The following command will automatically download
PASCAL VOC 2007 into $YOUR_DATA_ROOT, prepare the required files, create a folder data under $MMSELFSUP and
make a symlink VOCdevkit.

bash tools/dataset_converters/prepare_voc07_cls.sh $YOUR_DATA_ROOT

3.2.5 Prepare CIFAR10

MMSelfSup uses CIFAR10 implemented by MMClassification. In addition, MMClassification supports automatic
download of the CIFAR10 dataset, you just need to specify the download folder in the data_root field. And specify
test_mode=False / test_mode=True to use the training or test dataset. For more details, please refer to docs in
MMClassification.

3.2.6 Prepare datasets for detection and segmentation

Detection

To prepare COCO, VOC2007 and VOC2012 for detection, you can refer to mmdetection.

Segmentation

To prepare VOC2012AUG and Cityscapes for segmentation, you can refer to mmsegmentation

3.3 Tutorial 3: Pretrain with Existing Models

• Tutorial 3: Pretrain with Existing Models

– Start to Train

∗ Train with a single GPU

∗ Train with CPU

∗ Train with multiple GPUs

∗ Train with multiple machines

∗ Launch multiple jobs on a single machine

This page provides the basic usage about how to run algorithms and how to use some tools in MMSelfSup. For
installation instructions and data preparation, please refer to get_started.md and dataset_prepare.md.

20 Chapter 3. Pretrain

https://github.com/visipedia/inat_comp/tree/master/2018
https://github.com/open-mmlab/mmclassification/blob/1.x/mmcls/datasets/cifar.py
https://github.com/open-mmlab/mmclassification/blob/1.x/docs/en/user_guides/dataset_prepare.md#cifar
https://github.com/open-mmlab/mmdetection/blob/main/docs/en/1_exist_data_model.md
https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#prepare-datasets

MMSelfSup, Release 1.0.0rc6

3.3.1 Start to Train

Note: The default learning rate in config files is for specific number of GPUs, which is indicated in the config names.
If you use different number of GPUs, the total batch size will be changed in proportion. In this case, you have to scale
the learning rate following new_lr = old_lr * new_batchsize / old_batchsize.

Train with a single GPU

python tools/train.py ${CONFIG_FILE} [optional arguments]

A simple example to start training:

python tools/train.py configs/selfsup/mae/mae_vit-base-p16_8xb512-coslr-400e_in1k.py

Train with CPU

export CUDA_VISIBLE_DEVICES=-1
python tools/train.py ${CONFIG_FILE} [optional arguments]

Note: We do not recommend users to use CPU for training because it is too slow. We support this feature to allow
users to debug on machines without GPU for convenience.

Train with multiple GPUs

bash tools/dist_train.sh ${CONFIG_FILE} ${GPUS} [optional arguments]

Optional arguments:

• --work-dir: Indicate your custom work directory to save checkpoints and logs.

• --resume: Automatically find the latest checkpoint in your work directory. Or set --resume
${CHECKPOINT_PATH} to load the specific checkpoint file.

• --amp: Enable automatic-mixed-precision training.

• --cfg-options: Setting --cfg-options will modify the original configs. For example, setting
--cfg-options randomness.seed=0 will set seed for random number.

An example to start training with 8 GPUs:

bash tools/dist_train.sh configs/selfsup/mae/mae_vit-base-p16_8xb512-coslr-400e_in1k.py 8

Alternatively, if you run MMSelfSup on a cluster managed with slurm:

GPUS_PER_NODE=${GPUS_PER_NODE} GPUS=${GPUS} SRUN_ARGS=${SRUN_ARGS} bash tools/slurm_
→˓train.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} [optional arguments]

An example to start training with 8 GPUs:

The default setting: GPUS_PER_NODE=8 GPUS=8
bash tools/slurm_train.sh Dummy Test_job configs/selfsup/mae/mae_vit-base-p16_8xb512-
→˓coslr-400e_in1k.py

3.3. Tutorial 3: Pretrain with Existing Models 21

https://slurm.schedmd.com/

MMSelfSup, Release 1.0.0rc6

Train with multiple machines

If you launch with multiple machines simply connected with ethernet, you can simply run the following commands:

On the first machine:

NNODES=2 NODE_RANK=0 PORT=${MASTER_PORT} MASTER_ADDR=${MASTER_ADDR} bash tools/dist_
→˓train.sh ${CONFIG} ${GPUS}

On the second machine:

NNODES=2 NODE_RANK=1 PORT=${MASTER_PORT} MASTER_ADDR=${MASTER_ADDR} bash tools/dist_
→˓train.sh ${CONFIG} ${GPUS}

Usually it is slow if you do not have high speed networking like InfiniBand.

If you launch with slurm, the command is the same as that on single machine described above, but you need to refer to
slurm_train.sh to set appropriate parameters and environment variables.

Launch multiple jobs on a single machine

If you launch multiple jobs on a single machine, e.g., 2 jobs of 4-GPU training on a machine with 8 GPUs, you need
to specify different ports (29500 by default) for each job to avoid the communication conflict.

If you use dist_train.sh to launch training jobs:

CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 bash tools/dist_train.sh ${CONFIG_FILE} 4 --work-
→˓dir tmp_work_dir_1

CUDA_VISIBLE_DEVICES=4,5,6,7 PORT=29501 bash tools/dist_train.sh ${CONFIG_FILE} 4 --work-
→˓dir tmp_work_dir_2

If you launch training jobs with slurm, you have two options to set different communication ports:

Option 1:

In config1.py:

env_cfg = dict(dist_cfg=dict(backend='nccl', port=29500))

In config2.py:

env_cfg = dict(dist_cfg=dict(backend='nccl', port=29501))

Then you can launch two jobs with config1.py and config2.py.

CUDA_VISIBLE_DEVICES=0,1,2,3 GPUS=4 bash tools/slurm_train.sh ${PARTITION} ${JOB_NAME}␣
→˓config1.py [optional arguments]

CUDA_VISIBLE_DEVICES=4,5,6,7 GPUS=4 bash tools/slurm_train.sh ${PARTITION} ${JOB_NAME}␣
→˓config2.py [optional arguments]

Option 2:

You can set different communication ports without the need to modify the configuration file, but have to set the
--cfg-options to overwrite the default port in the configuration file.

22 Chapter 3. Pretrain

https://github.com/open-mmlab/mmselfsup/blob/main/tools/slurm_train.sh

MMSelfSup, Release 1.0.0rc6

CUDA_VISIBLE_DEVICES=0,1,2,3 GPUS=4 bash tools/slurm_train.sh ${PARTITION} ${JOB_NAME}␣
→˓config1.py --work-dir tmp_work_dir_1 --cfg-options env_cfg.dist_cfg.port=29500

CUDA_VISIBLE_DEVICES=4,5,6,7 GPUS=4 bash tools/slurm_train.sh ${PARTITION} ${JOB_NAME}␣
→˓config2.py --work-dir tmp_work_dir_2 --cfg-options env_cfg.dist_cfg.port=29501

3.4 Tutorial 4: Pretrain with Custom Dataset

• Tutorial 4: Pretrain with Custom Dataset

– Train MAE on Custom Dataset

∗ Step-1: Get the path of custom dataset

∗ Step-2: Choose one config as template

∗ Step-3: Edit the dataset related config

– Train MAE on COCO Dataset

– Train SimCLR on Custom Dataset

– Load pre-trained model to speedup convergence

In this tutorial, we provide some tips on how to conduct self-supervised learning on your own dataset(without the need
of label).

3.4.1 Train MAE on Custom Dataset

In MMSelfSup, We support the CustomDataset from MMClassification(similar to the ImageFolder in
torchvision), which is able to read the images within the specified folder directly. You only need to prepare the
path information of the custom dataset and edit the config.

Step-1: Get the path of custom dataset

It should be like data/custom_dataset/

Step-2: Choose one config as template

Here, we would like to use configs/selfsup/mae/mae_vit-base-p16_8xb512-coslr-400e_in1k.
py as the example. We first copy this config file and rename it as
mae_vit-base-p16_8xb512-coslr-400e_${custom_dataset}.py.

• custom_dataset: indicate which dataset you used, e.g.,in1k for ImageNet dataset, coco for COCO dataset

The content of this config is:

base = [
'../_base_/models/mae_vit-base-p16.py',
'../_base_/datasets/imagenet_mae.py',
'../_base_/schedules/adamw_coslr-200e_in1k.py',
'../_base_/default_runtime.py',

]
(continues on next page)

3.4. Tutorial 4: Pretrain with Custom Dataset 23

MMSelfSup, Release 1.0.0rc6

(continued from previous page)

dataset 8 x 512
train_dataloader = dict(batch_size=512, num_workers=8)

optimizer wrapper
optimizer = dict(

type='AdamW', lr=1.5e-4 * 4096 / 256, betas=(0.9, 0.95), weight_decay=0.05)
optim_wrapper = dict(

type='OptimWrapper',
optimizer=optimizer,
paramwise_cfg=dict(

custom_keys={
'ln': dict(decay_mult=0.0),
'bias': dict(decay_mult=0.0),
'pos_embed': dict(decay_mult=0.),
'mask_token': dict(decay_mult=0.),
'cls_token': dict(decay_mult=0.)

}))

learning rate scheduler
param_scheduler = [

dict(
type='LinearLR',
start_factor=1e-4,
by_epoch=True,
begin=0,
end=40,
convert_to_iter_based=True),

dict(
type='CosineAnnealingLR',
T_max=360,
by_epoch=True,
begin=40,
end=400,
convert_to_iter_based=True)

]

runtime settings
pre-train for 400 epochs
train_cfg = dict(max_epochs=400)
default_hooks = dict(

logger=dict(type='LoggerHook', interval=100),
only keeps the latest 3 checkpoints
checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3))

randomness
randomness = dict(seed=0, diff_rank_seed=True)
resume = True

24 Chapter 3. Pretrain

MMSelfSup, Release 1.0.0rc6

Step-3: Edit the dataset related config

The dataset related config is defined in '../_base_/datasets/imagenet_mae.py' in _base_. We then copy the
content of dataset config file into our created file mae_vit-base-p16_8xb512-coslr-400e_${custom_dataset}.
py.

• Then we remove the '../_base_/datasets/imagenet_mae.py' in _base_.

• Set the dataset_type = 'mmcls.CustomDataset', and the path of the custom dataset data_root = /
dataset/my_custom_dataset.

• Remove the ann_file in train_dataloader, and edit the data_prefix if needed.

Note: The CustomDataset is implemented in MMClassification, and we set the dataset_type=mmcls.
CustomDataset.

And the edited config will be like this:

>>>>>>>>>>>>>>>>>>>>> Start of Changed >>>>>>>>>>>>>>>>>>>>>>>>>
base = [

'../_base_/models/mae_vit-base-p16.py',
'../_base_/datasets/imagenet_mae.py',
'../_base_/schedules/adamw_coslr-200e_in1k.py',
'../_base_/default_runtime.py',

]

custom dataset
dataset_type = 'mmcls.CustomDataset'
data_root = 'data/custom_dataset/'
train_pipeline = [

dict(type='LoadImageFromFile'),
dict(

type='RandomResizedCrop',
size=224,
scale=(0.2, 1.0),
backend='pillow',
interpolation='bicubic'),

dict(type='RandomFlip', prob=0.5),
dict(type='PackSelfSupInputs', meta_keys=['img_path'])

]

dataset 8 x 512
train_dataloader = dict(

batch_size=512,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
collate_fn=dict(type='default_collate'),
dataset=dict(

type=dataset_type,
data_root=data_root,
ann_file='meta/train.txt', # removed if you don't have the annotation file
data_prefix=dict(img_path='./'),
pipeline=train_pipeline))

(continues on next page)

3.4. Tutorial 4: Pretrain with Custom Dataset 25

MMSelfSup, Release 1.0.0rc6

(continued from previous page)

<<<<<<<<<<<<<<<<<<<<<< End of Changed <<<<<<<<<<<<<<<<<<<<<<<<<<<

optimizer wrapper
optimizer = dict(

type='AdamW', lr=1.5e-4 * 4096 / 256, betas=(0.9, 0.95), weight_decay=0.05)
optim_wrapper = dict(

type='OptimWrapper',
optimizer=optimizer,
paramwise_cfg=dict(

custom_keys={
'ln': dict(decay_mult=0.0),
'bias': dict(decay_mult=0.0),
'pos_embed': dict(decay_mult=0.),
'mask_token': dict(decay_mult=0.),
'cls_token': dict(decay_mult=0.)

}))

learning rate scheduler
param_scheduler = [

dict(
type='LinearLR',
start_factor=1e-4,
by_epoch=True,
begin=0,
end=40,
convert_to_iter_based=True),

dict(
type='CosineAnnealingLR',
T_max=360,
by_epoch=True,
begin=40,
end=400,
convert_to_iter_based=True)

]

runtime settings
pre-train for 400 epochs
train_cfg = dict(max_epochs=400)
default_hooks = dict(

logger=dict(type='LoggerHook', interval=100),
only keeps the latest 3 checkpoints
checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3))

randomness
randomness = dict(seed=0, diff_rank_seed=True)
resume = True

By using the edited config file, you are able to train a self-supervised model with MAE algorithm on the custom dataset.

26 Chapter 3. Pretrain

MMSelfSup, Release 1.0.0rc6

3.4.2 Train MAE on COCO Dataset

Note: You need to install MMDetection to use the mmdet.CocoDataset follow this documentation

Follow the aforementioned idea, we also present an example of how to train MAE on COCO dataset. The edited file
will be like this:

>>>>>>>>>>>>>>>>>>>>> Start of Changed >>>>>>>>>>>>>>>>>>>>>>>>>
base = [

'../_base_/models/mae_vit-base-p16.py',
'../_base_/datasets/imagenet_mae.py',
'../_base_/schedules/adamw_coslr-200e_in1k.py',
'../_base_/default_runtime.py',

]

custom dataset
dataset_type = 'mmdet.CocoDataset'
data_root = 'data/coco/'

train_pipeline = [
dict(type='LoadImageFromFile'),
dict(

type='RandomResizedCrop',
size=224,
scale=(0.2, 1.0),
backend='pillow',
interpolation='bicubic'),

dict(type='RandomFlip', prob=0.5),
dict(type='PackSelfSupInputs', meta_keys=['img_path'])

]

train_dataloader = dict(
batch_size=128,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
collate_fn=dict(type='default_collate'),
dataset=dict(

type=dataset_type,
data_root=data_root,
ann_file='annotations/instances_train2017.json',
data_prefix=dict(img='train2017/'),
pipeline=train_pipeline))

<<<<<<<<<<<<<<<<<<<<<< End of Changed <<<<<<<<<<<<<<<<<<<<<<<<<<<

optimizer wrapper
optimizer = dict(

type='AdamW', lr=1.5e-4 * 4096 / 256, betas=(0.9, 0.95), weight_decay=0.05)
optim_wrapper = dict(

type='OptimWrapper',
optimizer=optimizer,

(continues on next page)

3.4. Tutorial 4: Pretrain with Custom Dataset 27

https://github.com/open-mmlab/mmdetection/blob/main/docs/en/get_started.md

MMSelfSup, Release 1.0.0rc6

(continued from previous page)

paramwise_cfg=dict(
custom_keys={

'ln': dict(decay_mult=0.0),
'bias': dict(decay_mult=0.0),
'pos_embed': dict(decay_mult=0.),
'mask_token': dict(decay_mult=0.),
'cls_token': dict(decay_mult=0.)

}))

learning rate scheduler
param_scheduler = [

dict(
type='LinearLR',
start_factor=1e-4,
by_epoch=True,
begin=0,
end=40,
convert_to_iter_based=True),

dict(
type='CosineAnnealingLR',
T_max=360,
by_epoch=True,
begin=40,
end=400,
convert_to_iter_based=True)

]

runtime settings
pre-train for 400 epochs
train_cfg = dict(max_epochs=400)
default_hooks = dict(

logger=dict(type='LoggerHook', interval=100),
only keeps the latest 3 checkpoints
checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3))

randomness
randomness = dict(seed=0, diff_rank_seed=True)
resume = True

3.4.3 Train SimCLR on Custom Dataset

We provide an example of using SimCLR on custom dataset, the main idea is similar to the Train MAE on Custom
Dataset .

The template config is configs/selfsup/simclr/simclr_resnet50_8xb32-coslr-200e_in1k.py. And the
edited config is:

>>>>>>>>>>>>>>>>>>>>> Start of Changed >>>>>>>>>>>>>>>>>>>>>>>>>
base = [

'../_base_/models/simclr.py',
'../_base_/datasets/imagenet_simclr.py',

(continues on next page)

28 Chapter 3. Pretrain

MMSelfSup, Release 1.0.0rc6

(continued from previous page)

'../_base_/schedules/lars_coslr-200e_in1k.py',
'../_base_/default_runtime.py',

]

custom dataset
dataset_type = 'mmcls.CustomDataset'
data_root = 'data/custom_dataset/'

view_pipeline = [
dict(type='RandomResizedCrop', size=224, backend='pillow'),
dict(type='RandomFlip', prob=0.5),
dict(

type='RandomApply',
transforms=[

dict(
type='ColorJitter',
brightness=0.8,
contrast=0.8,
saturation=0.8,
hue=0.2)

],
prob=0.8),

dict(
type='RandomGrayscale',
prob=0.2,
keep_channels=True,
channel_weights=(0.114, 0.587, 0.2989)),

dict(type='RandomGaussianBlur', sigma_min=0.1, sigma_max=2.0, prob=0.5),
]

train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='MultiView', num_views=2, transforms=[view_pipeline]),
dict(type='PackSelfSupInputs', meta_keys=['img_path'])

]

train_dataloader = dict(
batch_size=32,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
collate_fn=dict(type='default_collate'),
dataset=dict(

type=dataset_type,
data_root=data_root,
ann_file='meta/train.txt',
data_prefix=dict(img_path='./'),
pipeline=train_pipeline))

<<<<<<<<<<<<<<<<<<<<<< End of Changed <<<<<<<<<<<<<<<<<<<<<<<<<<<

optimizer

(continues on next page)

3.4. Tutorial 4: Pretrain with Custom Dataset 29

MMSelfSup, Release 1.0.0rc6

(continued from previous page)

optimizer = dict(type='LARS', lr=0.3, momentum=0.9, weight_decay=1e-6)
optim_wrapper = dict(

type='OptimWrapper',
optimizer=optimizer,
paramwise_cfg=dict(

custom_keys={
'bn': dict(decay_mult=0, lars_exclude=True),
'bias': dict(decay_mult=0, lars_exclude=True),
bn layer in ResNet block downsample module
'downsample.1': dict(decay_mult=0, lars_exclude=True),

}))

runtime settings
default_hooks = dict(

only keeps the latest 3 checkpoints
checkpoint=dict(type='CheckpointHook', interval=10, max_keep_ckpts=3))

3.4.4 Load pre-trained model to speedup convergence

To speedup the convergence of the model on your own dataset. You may use the pre-trained model as the initialization
for the model’s weight. You just need to specify the url of the pre-trained model via command. You can find our provide
pre-trained checkpoint here: Model Zoo

bash tools/dist_train.sh ${CONFIG} ${GPUS} --cfg-options model.pretrained=${PRETRAIN}

• CONFIG: the edited config path

• GPUS: the number of GPU

• PRETRAIN: the checkpoint url of pre-trained model provided by MMSelfSup

30 Chapter 3. Pretrain

https://mmselfsup.readthedocs.io/en/1.x/model_zoo.html

CHAPTER

FOUR

DOWNSTREAM TASKS

4.1 Classification

• Classification

– VOC SVM / Low-shot SVM

– Linear Evaluation and Fine-tuning

– ImageNet Semi-Supervised Classification

– ImageNet Nearest-Neighbor Classification

In MMSelfSup, we provide many benchmarks for classification, thus the models can be evaluated on different classifi-
cation tasks. Here are comprehensive tutorials and examples to explain how to run all classification benchmarks with
MMSelfSup. We provide scripts in folder tools/benchmarks/classification/, which has 2 .sh files, 1 folder
for VOC SVM related classification task and 1 folder for ImageNet nearest-neighbor classification task.

4.1.1 VOC SVM / Low-shot SVM

To run these benchmarks, you should first prepare your VOC datasets. Please refer to prepare_data.md for the details
of data preparation.

To evaluate the pre-trained models, you can run the command below.

distributed version
bash tools/benchmarks/classification/svm_voc07/dist_test_svm_pretrain.sh ${SELFSUP_
→˓CONFIG} ${GPUS} ${PRETRAIN} ${FEATURE_LIST}

slurm version
bash tools/benchmarks/classification/svm_voc07/slurm_test_svm_pretrain.sh ${PARTITION} $
→˓{JOB_NAME} ${SELFSUP_CONFIG} ${PRETRAIN} ${FEATURE_LIST}

Besides, if you want to evaluate the ckpt files saved by runner, you can run the command below.

distributed version
bash tools/benchmarks/classification/svm_voc07/dist_test_svm_epoch.sh ${SELFSUP_CONFIG} $
→˓{EPOCH} ${FEATURE_LIST}

slurm version
bash tools/benchmarks/classification/svm_voc07/slurm_test_svm_epoch.sh ${PARTITION} $
→˓{JOB_NAME} ${SELFSUP_CONFIG} ${EPOCH} ${FEATURE_LIST}

31

MMSelfSup, Release 1.0.0rc6

To test with ckpt, the code uses the epoch_*.pth file, there is no need to extract weights.
Remarks:

• ${SELFSUP_CONFIG} is the config file of the self-supervised experiment.

• ${FEATURE_LIST} is a string to specify features from layer1 to layer5 to evaluate; e.g., if you want to evaluate
layer5 only, then FEATURE_LIST is “feat5”, if you want to evaluate all features, then FEATURE_LIST is “feat1
feat2 feat3 feat4 feat5” (separated by space). If left empty, the default FEATURE_LIST is “feat5”.

• ${PRETRAIN}: the pre-trained model file.

• if you want to change GPU numbers, you could add GPUS_PER_NODE=4 GPUS=4 at the beginning of the com-
mand.

• ${EPOCH} is the epoch number of the ckpt that you want to test

4.1.2 Linear Evaluation and Fine-tuning

Linear evaluation and fine-tuning are two of the most general benchmarks. We provide config files and scripts to launch
the training and testing for Linear Evaluation and Fine-tuning. The supported datasets are ImageNet, Places205 and
iNaturalist18.

First, make sure you have installed MIM, which is also a project of OpenMMLab.

pip install openmim

Besides, please refer to MMClassification for installation and data preparation.

Then, run the command below.

distributed version
bash tools/benchmarks/classification/mim_dist_train.sh ${CONFIG} ${PRETRAIN}

slurm version
bash tools/benchmarks/classification/mim_slurm_train.sh ${PARTITION} ${JOB_NAME} $
→˓{CONFIG} ${PRETRAIN}

Remarks:

• ${CONFIG}: Use config files under configs/benchmarks/classification/. Specifically, imagenet (ex-
cluding imagenet_*percent folders), places205 and inaturalist2018.

• ${PRETRAIN}: the pre-trained model file.

Example:

bash ./tools/benchmarks/classification/mim_dist_train.sh \
configs/benchmarks/classification/imagenet/resnet50_linear-8xb32-coslr-100e_in1k.py \
work_dir/pretrained_model.pth

If you want to test the well-trained model, please run the command below.

distributed version
bash tools/benchmarks/classification/mim_dist_test.sh ${CONFIG} ${CHECKPOINT}

slurm version
bash tools/benchmarks/classification//mim_slurm_test.sh ${PARTITION} ${CONFIG} $
→˓{CHECKPOINT}

32 Chapter 4. Downstream Tasks

https://github.com/open-mmlab/mim
https://github.com/open-mmlab/mmclassification/blob/dev-1.x/docs/en/install.md
https://github.com/open-mmlab/mmclassification/blob/dev-1.x/docs/en/getting_started.md

MMSelfSup, Release 1.0.0rc6

Remarks:

• ${CHECKPOINT}: The well-trained classification model that you want to test.

Example:

bash ./tools/benchmarks/mmsegmentation/mim_dist_test.sh \
configs/benchmarks/classification/imagenet/resnet50_linear-8xb32-coslr-100e_in1k.py \
work_dir/model.pth

4.1.3 ImageNet Semi-Supervised Classification

To run ImageNet semi-supervised classification, we still use the same .sh script as Linear Evaluation and Fine-tuning
to launch training.

Remarks:

• The default GPU number is 4.

• ${CONFIG}: Use config files under configs/benchmarks/classification/imagenet/, named
imagenet_*percent folders.

• ${PRETRAIN}: the pre-trained model file.

4.1.4 ImageNet Nearest-Neighbor Classification

Only support CNN-style backbones (like ResNet50).

To evaluate the pre-trained models using the nearest-neighbor benchmark, you can run the command below.

distributed version
bash tools/benchmarks/classification/knn_imagenet/dist_test_knn.sh ${SELFSUP_CONFIG} $
→˓{PRETRAIN} [optional arguments]

slurm version
bash tools/benchmarks/classification/knn_imagenet/slurm_test_knn.sh ${PARTITION} ${JOB_
→˓NAME} ${SELFSUP_CONFIG} ${CHECKPOINT} [optional arguments]

Remarks:

• ${SELFSUP_CONFIG} is the config file of the self-supervised experiment.

• ${CHECKPOINT}: the path of checkpoint model file.

• if you want to change GPU numbers, you could add GPUS_PER_NODE=4 GPUS=4 at the beginning of the com-
mand.

• [optional arguments]: for optional arguments, you can refer to the script

An example of command

distributed version
bash tools/benchmarks/classification/knn_imagenet/dist_test_knn.sh \

configs/selfsup/barlowtwins/barlowtwins_resnet50_8xb256-coslr-300e_in1k.py \
https://download.openmmlab.com/mmselfsup/1.x/barlowtwins/barlowtwins_resnet50_8xb256-

→˓coslr-300e_in1k/barlowtwins_resnet50_8xb256-coslr-300e_in1k_20220825-57307488.pth

4.1. Classification 33

https://github.com/open-mmlab/mmselfsup/blob/main/tools/benchmarks/classification/knn_imagenet/test_knn.py

MMSelfSup, Release 1.0.0rc6

4.2 Detection

• Detection

– Train

– Test

Here, we prefer to use MMDetection to do the detection task. First, make sure you have installed MIM, which is also
a project of OpenMMLab.

pip install openmim
mim install 'mmdet>=3.0.0rc0'

It is very easy to install the package.

Besides, please refer to MMDet for installation and data preparation

4.2.1 Train

After installation, you can run MMDetection with simple command.

distributed version
bash tools/benchmarks/mmdetection/mim_dist_train_c4.sh ${CONFIG} ${PRETRAIN} ${GPUS}
bash tools/benchmarks/mmdetection/mim_dist_train_fpn.sh ${CONFIG} ${PRETRAIN} ${GPUS}

slurm version
bash tools/benchmarks/mmdetection/mim_slurm_train_c4.sh ${PARTITION} ${CONFIG} $
→˓{PRETRAIN}
bash tools/benchmarks/mmdetection/mim_slurm_train_fpn.sh ${PARTITION} ${CONFIG} $
→˓{PRETRAIN}

Remarks:

• ${CONFIG}: Use config files under configs/benchmarks/mmdetection/. Since repositories of OpenMM-
Lab have support referring config files across different repositories, we can easily leverage the configs from
MMDetection like:

base = 'mmdet::mask_rcnn/mask-rcnn_r50-caffe-c4_1x_coco.py'

Writing your config files from scratch is also supported.

• ${PRETRAIN}: the pre-trained model file.

• ${GPUS}: The number of GPUs that you want to use to train. We adopt 8 GPUs for detection tasks by default.

Example:

bash ./tools/benchmarks/mmdetection/mim_dist_train_c4.sh \
configs/benchmarks/mmdetection/coco/mask-rcnn_r50-c4_ms-1x_coco.py \
https://download.openmmlab.com/mmselfsup/1.x/byol/byol_resnet50_16xb256-coslr-200e_in1k/
→˓byol_resnet50_16xb256-coslr-200e_in1k_20220825-de817331.pth 8

Or if you want to do detection task with detectron2, we also provide some config files. Please refer to INSTALL.md
for installation and follow the directory structure to prepare your datasets required by detectron2.

34 Chapter 4. Downstream Tasks

https://github.com/open-mmlab/mim
https://mmdetection.readthedocs.io/en/dev-3.x/get_started.html
https://mmdetection.readthedocs.io/en/dev-3.x/user_guides/dataset_prepare.html
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2/blob/main/INSTALL.md
https://github.com/facebookresearch/detectron2/tree/main/datasets

MMSelfSup, Release 1.0.0rc6

conda activate detectron2 # use detectron2 environment here, otherwise use open-mmlab␣
→˓environment
cd tools/benchmarks/detectron2
python convert-pretrain-to-detectron2.py ${WEIGHT_FILE} ${OUTPUT_FILE} # must use .pkl␣
→˓as the output extension.
bash run.sh ${DET_CFG} ${OUTPUT_FILE}

4.2.2 Test

After training, you can also run the command below to test your model.

distributed version
bash tools/benchmarks/mmdetection/mim_dist_test.sh ${CONFIG} ${CHECKPOINT} ${GPUS}

slurm version
bash tools/benchmarks/mmdetection/mim_slurm_test.sh ${PARTITION} ${CONFIG} ${CHECKPOINT}

Remarks:

• ${CHECKPOINT}: The well-trained detection model that you want to test.

Example:

bash ./tools/benchmarks/mmdetection/mim_dist_test.sh \
configs/benchmarks/mmdetection/coco/mask-rcnn_r50_fpn_ms-1x_coco.py \
https://download.openmmlab.com/mmselfsup/1.x/byol/byol_resnet50_16xb256-coslr-200e_in1k/
→˓byol_resnet50_16xb256-coslr-200e_in1k_20220825-de817331.pth 8

4.3 Segmentation

• Segmentation

– Train

– Test

For semantic segmentation task, we use MMSegmentation. First, make sure you have installed MIM, which is also a
project of OpenMMLab.

pip install openmim
mim install 'mmsegmentation>=1.0.0rc0'

It is very easy to install the package.

Besides, please refer to MMSegmentation for installation and data preparation.

4.3. Segmentation 35

https://github.com/open-mmlab/mim
https://mmsegmentation.readthedocs.io/en/dev-1.x/get_started.html
https://mmsegmentation.readthedocs.io/en/dev-1.x/user_guides/2_dataset_prepare.html

MMSelfSup, Release 1.0.0rc6

4.3.1 Train

After installation, you can run MMSeg with simple command.

distributed version
bash tools/benchmarks/mmsegmentation/mim_dist_train.sh ${CONFIG} ${PRETRAIN} ${GPUS}

slurm version
bash tools/benchmarks/mmsegmentation/mim_slurm_train.sh ${PARTITION} ${CONFIG} $
→˓{PRETRAIN}

Remarks:

• ${CONFIG}: Use config files under configs/benchmarks/mmsegmentation/. Since repositories of Open-
MMLab have support referring config files across different repositories, we can easily leverage the configs from
MMSegmentation like:

base = 'mmseg::fcn/fcn_r50-d8_4xb2-40k_cityscapes-769x769.py'

Writing your config files from scratch is also supported.

• ${PRETRAIN}: the pre-trained model file.

• ${GPUS}: The number of GPUs that you want to use to train. We adopt 4 GPUs for segmentation tasks by
default.

Example:

bash ./tools/benchmarks/mmsegmentation/mim_dist_train.sh \
configs/benchmarks/mmsegmentation/voc12aug/fcn_r50-d8_4xb4-20k_voc12aug-512x512.py \
https://download.openmmlab.com/mmselfsup/1.x/byol/byol_resnet50_16xb256-coslr-200e_in1k/
→˓byol_resnet50_16xb256-coslr-200e_in1k_20220825-de817331.pth 4

4.3.2 Test

After training, you can also run the command below to test your model.

distributed version
bash tools/benchmarks/mmsegmentation/mim_dist_test.sh ${CONFIG} ${CHECKPOINT} ${GPUS}

slurm version
bash tools/benchmarks/mmsegmentation/mim_slurm_test.sh ${PARTITION} ${CONFIG} $
→˓{CHECKPOINT}

Remarks:

• ${CHECKPOINT}: The well-trained segmentation model that you want to test.

Example:

bash ./tools/benchmarks/mmsegmentation/mim_dist_test.sh \
configs/benchmarks/mmsegmentation/voc12aug/fcn_r50-d8_4xb4-20k_voc12aug-512x512.py \
https://download.openmmlab.com/mmselfsup/1.x/byol/byol_resnet50_16xb256-coslr-200e_in1k/
→˓byol_resnet50_16xb256-coslr-200e_in1k_20220825-de817331.pth 4

36 Chapter 4. Downstream Tasks

CHAPTER

FIVE

USEFUL TOOLS

5.1 Visualization

Visualization can give an intuitive interpretation of the performance of the model.

• Visualization

– How visualization is implemented

– What Visualization do in MMSelfsup

– Use Different Storage Backends

– Customize Visualization

– Visualize Datasets

– Visualize t-SNE

– Visualize Low-level Feature Reconstruction

– Visualize Shape Bias

∗ Prepare the dataset

∗ Modify the config for classification

∗ Inference your model with above modified config file

∗ Plot shape bias

5.1.1 How visualization is implemented

It is recommended to learn the basic concept of visualization in documentation.

OpenMMLab 2.0 introduces the visualization object Visualizer and several visualization backends VisBackend.
The diagram below shows the relationship between Visualizer and VisBackend,

37

https://github.com/open-mmlab/mmengine/blob/main/docs/en/design/visualization.md

MMSelfSup, Release 1.0.0rc6

5.1.2 What Visualization do in MMSelfsup

(1) Save training data using different storage backends

The backends in MMEngine includes LocalVisBackend, TensorboardVisBackend and WandbVisBackend .

During training, after_train_iter() in the default hook LoggerHook will be called, and use add_scalars in different
backends, as follows:

...
def after_train_iter(...):

...
runner.visualizer.add_scalars(

tag, step=runner.iter + 1, file_path=self.json_log_path)
...

(2) Browse dataset

The function add_datasample() is impleted in SelfSupVisualizer, and it is mainly used in browse_dataset.py for
browsing dataset. More tutorial is in section Visualize Datasets

5.1.3 Use Different Storage Backends

If you want to use a different backend (Wandb, Tensorboard, or a custom backend with a remote window), just change
the vis_backends in the config, as follows:

Local

vis_backends = [dict(type='LocalVisBackend')]

Tensorboard

vis_backends = [dict(type='TensorboardVisBackend')]
visualizer = dict(

type='SelfSupVisualizer', vis_backends=vis_backends, name='visualizer')

E.g.

Wandb

vis_backends = [dict(type='WandbVisBackend')]
visualizer = dict(

type='SelfSupVisualizer', vis_backends=vis_backends, name='visualizer')

E.g.

38 Chapter 5. Useful Tools

https://github.com/open-mmlab/mmengine/blob/main/mmengine/hooks/logger_hook.py#L150
https://github.com/open-mmlab/mmselfsup/blob/main/mmselfsup/visualization/selfsup_visualizer.py#L151
https://github.com/open-mmlab/mmselfsup/blob/main/tools/analysis_tools/browse_dataset.py

MMSelfSup, Release 1.0.0rc6

5.1.4 Customize Visualization

The customization of the visualization is similar to other components. If you want to customize Visualizer,
VisBackend or VisualizationHook, you can refer to Visualization Doc in MMEngine.

5.1.5 Visualize Datasets

tools/misc/browse_dataset.py helps the user to browse a mmselfsup dataset (transformed images) visually, or
save the image to a designated directory.

python tools/misc/browse_dataset.py ${CONFIG} [-h] [--skip-type ${SKIP_TYPE[SKIP_TYPE...
→˓]}] [--output-dir ${OUTPUT_DIR}] [--not-show] [--show-interval ${SHOW_INTERVAL}]

An example:

python tools/misc/browse_dataset.py configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-
→˓100e_in1k.py

An example of visualization:

• The left two pictures are images from contrastive learning data pipeline.

• The right one is a masked image.

5.1.6 Visualize t-SNE

We provide an off-the-shelf tool to visualize the quality of image representations by t-SNE.

python tools/analysis_tools/visualize_tsne.py ${CONFIG_FILE} --checkpoint ${CKPT_PATH} --
→˓work-dir ${WORK_DIR} [optional arguments]

Arguments:

• CONFIG_FILE: config file for t-SNE, which listed in the directory configs/tsne/

• CKPT_PATH: the path or link of the model’s checkpoint.

• WORK_DIR: the directory to save the results of visualization.

• [optional arguments]: for optional arguments, you can refer to visualize_tsne.py

An example of command:

python ./tools/analysis_tools/visualize_tsne.py \
configs/tsne/resnet50_imagenet.py \
--checkpoint https://download.openmmlab.com/mmselfsup/1.x/mocov2/mocov2_resnet50_

→˓8xb32-coslr-200e_in1k/mocov2_resnet50_8xb32-coslr-200e_in1k_20220825-b6d23c86.pth \
--work-dir ./work_dirs/tsne/mocov2/ \
--max-num-class 100

An example of visualization, left is from MoCoV2_ResNet50 and right is from MAE_ViT-base:

5.1. Visualization 39

https://github.com/open-mmlab/mmengine/blob/main/docs/en/advanced_tutorials/visualization.md
https://github.com/open-mmlab/mmselfsup/blob/main/tools/analysis_tools/visualize_tsne.py

MMSelfSup, Release 1.0.0rc6

5.1.7 Visualize Low-level Feature Reconstruction

We provide several reconstruction visualization for listed algorithms:

• MAE

• SimMIM

• MaskFeat

Users can run command below to visualize the reconstruction.

python tools/analysis_tools/visualize_reconstruction.py ${CONFIG_FILE} \
--checkpoint ${CKPT_PATH} \
--img-path ${IMAGE_PATH} \
--out-file ${OUTPUT_PATH}

Arguments:

• CONFIG_FILE: config file for the pre-trained model.

• CKPT_PATH: the path of model’s checkpoint.

• IMAGE_PATH: the input image path.

• OUTPUT_PATH: the output image path, including 4 sub-images.

• [optional arguments]: for optional arguments, you can refer to visualize_reconstruction.py

An example:

python tools/analysis_tools/visualize_reconstruction.py configs/selfsup/mae/mae_vit-huge-
→˓p16_8xb512-amp-coslr-1600e_in1k.py \

--checkpoint https://download.openmmlab.com/mmselfsup/1.x/mae/mae_vit-huge-p16_
→˓8xb512-fp16-coslr-1600e_in1k/mae_vit-huge-p16_8xb512-fp16-coslr-1600e_in1k_20220916-
→˓ff848775.pth \

--img-path data/imagenet/val/ILSVRC2012_val_00000003.JPEG \
--out-file test_mae.jpg \
--norm-pix

As for SimMIM, it generates the mask in data pipeline, thus we use '--use-vis-pipeline'␣
→˓to apply 'vis_pipeline' defined in config instead of the pipeline defined in script.
python tools/analysis_tools/visualize_reconstruction.py configs/selfsup/simmim/simmim_
→˓swin-large_16xb128-amp-coslr-800e_in1k-192.py \

--checkpoint https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-large_
→˓16xb128-amp-coslr-800e_in1k-192/simmim_swin-large_16xb128-amp-coslr-800e_in1k-192_
→˓20220916-4ad216d3.pth \

--img-path data/imagenet/val/ILSVRC2012_val_00000003.JPEG \
--out-file test_simmim.jpg \
--use-vis-pipeline

Results of MAE:

Results of SimMIM:

Results of MaskFeat:

40 Chapter 5. Useful Tools

https://github.com/open-mmlab/mmselfsup/blob/main/tools/analysis_tools/visualize_reconstruction.py

MMSelfSup, Release 1.0.0rc6

5.1.8 Visualize Shape Bias

Shape bias measures how a model relies the shapes, compared to texture, to sense the semantics in images. For more
details, we recommend interested readers to this paper. MMSelfSup provide an off-the-shelf toolbox to obtain the shape
bias of a classification model. You can following these steps below:

Prepare the dataset

First you should download the cue-conflict to data folder, and then unzip this dataset. After that, you data folder
should have the following structure:

data
cue-conflict

| | airplane
| | bear
| ...
| | truck

Modify the config for classification

Replace the original test_dataloader and test_evaluation with following configurations

test_pipeline = [...] # copy existing test transforms here
test_dataloader = dict(

dataset=dict(
type='CustomDataset',
data_root='data/cue-conflict',
pipeline=test_pipeline,
delete=True),

drop_last=False)
test_evaluator = dict(

type='mmselfsup.ShapeBiasMetric',
delete=True,
csv_dir='directory/to/save/the/csv/file',
model_name='your_model_name')

Please note you should make custom modifications to the csv_dir and model_name. You can follow the toy example
here to make custom modification to your evaluation.

Inference your model with above modified config file

Then you should inferece your model on the cue-conflict dataset with the your modified config files.

For Slurm
GPUS_PER_NODE=1 GPUS=1 bash tools/benchmarks/classification/mim_slurm_test.sh $partition
→˓$config $checkpoint

For PyTorch
GPUS=1 bash tools/benchmarks/classification/mim_dist_test.sh $config $checkpoint

After that, you should obtain a csv file, named cue-conflict_model-name_session-1.csv. Besides this file, you
should also download these csv files to the csv_dir.

5.1. Visualization 41

https://arxiv.org/abs/2106.07411
https://github.com/bethgelab/model-vs-human/releases/download/v0.1/cue-conflict.tar.gz
https://github.com/bethgelab/model-vs-human/tree/master/raw-data/cue-conflict

MMSelfSup, Release 1.0.0rc6

Plot shape bias

Then we can start to plot the shape bias

python tools/analysis_tools/visualize_shape_bias.py --csv-dir $CVS_DIR --result-dir $CSV_
→˓DIR --colors $RGB --markers o --plotting-names $YOU_MODEL_NAME --model-names $YOU_
→˓MODEL_NAME

• --csv-dir, the same directory to save these csv files

• --colors, should be the RGB values, formatted in R G B, e.g. 100 100 100, and can be multiple RGB values,
if you want to plot the shape bias of several models

• --plotting-names, the name of the legend in the shape bias figure, and you can set it as your model name. If
you want to plot several models, plotting_names can be multiple values

• --model-names, should be the same name specified in your config, and can be multiple names if you want to
plot the shape bias of several models

Please note, every three values for --colors corresponds to one value for --model-names. After all of above steps,
you are expected to obtain the following figure.

5.2 Analysis tools

• Analysis tools

– Count number of parameters

– Publish a model

– Reproducibility

– Log Analysis

5.2.1 Count number of parameters

python tools/analysis_tools/count_parameters.py ${CONFIG_FILE}

An example:

python tools/analysis_tools/count_parameters.py configs/selfsup/mocov2/mocov2_resnet50_
→˓8xb32-coslr-200e_in1k.py

5.2.2 Publish a model

Before you publish a model, you may want to

• Convert model weights to CPU tensors.

• Delete the optimizer states.

• Compute the hash of the checkpoint file and append the hash id to the filename.

python tools/model_converters/publish_model.py ${INPUT_FILENAME} ${OUTPUT_FILENAME}

An example:

42 Chapter 5. Useful Tools

MMSelfSup, Release 1.0.0rc6

python tools/model_converters/publish_model.py YOUR/PATH/epoch_100.pth YOUR/PATH/epoch_
→˓100_output.pth

5.2.3 Reproducibility

If you want to make your performance exactly reproducible, please set --cfg-options randomness.
deterministic=True to train the final model. Note that this will switch off torch.backends.cudnn.benchmark
and slow down the training speed.

5.2.4 Log Analysis

tools/analysis_tools/analyze_logs.py plots loss/lr curves given a training log file. Run pip install
seaborn first to install the dependency.

python tools/analysis_tools/analyze_logs.py plot_curve [--keys ${KEYS}] [--title ${TITLE}
→˓] [--legend ${LEGEND}] [--backend ${BACKEND}] [--style ${STYLE}] [--out ${OUT_FILE}]

Examples:

• Plot the classification loss of some run.

python tools/analysis_tools/analyze_logs.py plot_curve log.json --keys loss_dense --
→˓legend loss_dense

• Plot the classification and regression loss of some run, and save the figure to a pdf.

python tools/analysis_tools/analyze_logs.py plot_curve log.json --keys loss_dense␣
→˓loss_single --out losses.pdf

• Compare the loss of two runs in the same figure.

python tools/analysis_tools/analyze_logs.py plot_curve log1.json log2.json --keys␣
→˓loss --legend run1 run2

• Compute the average training speed.

python tools/analysis_tools/analyze_logs.py cal_train_time log.json [--include-
→˓outliers]

The output is expected to be like the following.

-----Analyze train time of work_dirs/some_exp/20190611_192040.log.json-----
slowest epoch 11, average time is 1.2024
fastest epoch 1, average time is 1.1909
time std over epochs is 0.0028
average iter time: 1.1959 s/iter

5.2. Analysis tools 43

MMSelfSup, Release 1.0.0rc6

44 Chapter 5. Useful Tools

CHAPTER

SIX

BASIC CONCEPTS

6.1 Data Flow

• Data Flow

– Data flow between dataloader and model

∗ Data from dataset

∗ Data from dataloader

∗ Data from data preprocessor

Data flow defines how data should be passed between two isolated modules, e.g. dataloader and model, as shown below.

In MMSelfSup, we mainly focus on the data flow between dataloader and model, and between model and visualizer.
As for the data flow between model and metric, please refer to the docs in other repos, e.g. MMClassification. Also for
data flow between model and visualizer, you can refer to visualization

6.1.1 Data flow between dataloader and model

The data flow between dataloader and model can be generally split into three parts, i) use PackSelfSupInputs to
pack data from previous transformations into a dictionary, ii) use collate_fn to stack a list of tensors into a batched
tensor, iii) data preprocessor will move all these data to target device, e.g. GPUS, and unzip the dictionary from the
dataloader into a tuple, containing the input images and meta info (SelfSupDataSample).

Data from dataset

In MMSelfSup, before feeding into the model, data should go through a series of transformations, called pipeline, e.g.
RandomResizedCrop and ColorJitter. No matter how many transformations in the pipeline, the last transformation
is PackSelfSupInputs. PackSelfSupInputs will pack these data from previous transformations into a dictionary.
The dictionary contains two parts, namely, inputs and data_samples.

We omit some unimportant code here

class PackSelfSupInputs(BaseTransform):

def transform(self,
results: Dict) -> Dict[torch.Tensor, SelfSupDataSample]:

packed_results = dict()
if self.key in results:

(continues on next page)

45

https://github.com/open-mmlab/mmclassification

MMSelfSup, Release 1.0.0rc6

(continued from previous page)

...
packed_results['inputs'] = img

...
packed_results['data_samples'] = data_sample

return packed_results

Note: inputs contains a list of images, e.g. the multi-views in contrastive learning. Even a single view,
PackSelfSupInputs will still put it into a list.

Data from dataloader

After receiving a list of dictionary from dataset, collect_fn in dataloader will gather inputs in each dict and stack
them into a batched tensor. In addition, data_sample in each dict will be also collected in a list. Then, it will output
a dict, containing the same keys with those of the dict in the received list. Finally, dataloader will output the dict from
the collect_fn.

Data from data preprocessor

Data preprocessor is the last step to process the data before feeding into the model. It will apply image normalization,
convert BGR to RGB and move all data to the target device, e.g. GPUs. After above steps, it will output a tuple,
containing a list of batched images, and a list of data samples.

class SelfSupDataPreprocessor(ImgDataPreprocessor):

def forward(
self,
data: dict,
training: bool = False

) -> Tuple[List[torch.Tensor], Optional[list]]:

assert isinstance(data,
dict), 'Please use default_collate in dataloader, \

instead of pseudo_collate.'

data = [val for _, val in data.items()]
batch_inputs, batch_data_samples = self.cast_data(data)
channel transform
if self._channel_conversion:

batch_inputs = [
_input[:, [2, 1, 0], ...] for _input in batch_inputs

]

Convert to float after channel conversion to ensure
efficiency
batch_inputs = [input_.float() for input_ in batch_inputs]

Normalization. Here is what is different from
:class:`mmengine.ImgDataPreprocessor`. Since there are multiple views
for an image for some algorithms, e.g. SimCLR, each item in inputs

(continues on next page)

46 Chapter 6. Basic Concepts

MMSelfSup, Release 1.0.0rc6

(continued from previous page)

is a list, containing multi-views for an image.
if self._enable_normalize:

batch_inputs = [(_input - self.mean) / self.std
for _input in batch_inputs]

return batch_inputs, batch_data_samples

6.2 Structures

• Structures

– Customized attributes in SelfSupDataSample

– Pack data to SelfSupDataSample in MMSelfSup

The same as those in other OpenMMLab repositories, MMSelfSup defines a data structure, called
SelfSupDataSample, which is used to receive and pass data during the whole training/testing process.
SelfSupDataSample inherits the BaseDataElement implemented in MMEngine. We recommend users to
refer to BaseDataElement for more in-depth introduction about the basics of BaseDataElement. In this tutorials, we
mainly discuss some customized features in SelfSupDataSample.

6.2.1 Customized attributes in SelfSupDataSample

In MMSelfSup, except for images, SelfSupDataSample wraps all information required by models, e.g. mask re-
quested by mask image modeling(MIM) and pseudo_label in pretext tasks. In addition to providing information, it
can also accept information generated by models, such as the prediction score. To fulfill these functionalities described
above, SelfSupDataSample defines five customized attributes:

• gt_label (LabelData), containing the groud-truth label for image.

• sample_idx (InstanceData), containing the index of current image in data list, initialized by dataset in the begin-
ning.

• mask (BaseDataElement), containing the mask in MIM, e.g. SimMIM, CAE.

• pred_label (LabelData), containing the label, predicted by model.

• pseudo_label (BaseDataElement), containing the pseudo label used in pretext tasks, such as the location in Rel-
ative Location.

To help users capture the basic idea of SelfSupDataSample, we give a toy example, about how to create a
SelfSupDataSample instance and set these attributes in it.

import torch
from mmselfsup.core import SelfSupDataSample
from mmengine.data import LabelData, InstanceData, BaseDataElement

selfsup_data_sample = SelfSupDataSample()
set the gt_label in selfsup_data_sample
gt_label should be the type of LabelData
selfsup_data_sample.gt_label = LabelData(value=torch.tensor([1]))

setting gt_label to a type, which is not LabelData, will raise an error
selfsup_data_sample.gt_label = torch.tensor([1])

(continues on next page)

6.2. Structures 47

https://github.com/open-mmlab/mmengine
https://github.com/open-mmlab/mmengine/blob/main/docs/en/advanced_tutorials/data_element.md

MMSelfSup, Release 1.0.0rc6

(continued from previous page)

AssertionError: tensor([1]) should be a <class 'mmengine.data.label_data.LabelData'>␣
→˓but got <class 'torch.Tensor'>

set the sample_idx in selfsup_data_sample
also, the assigned value of sample_idx should the type of InstanceData
selfsup_data_sample.sample_idx = InstanceData(value=torch.tensor([1]))

setting the mask in selfsup_data_sample
selfsup_data_sample.mask = BaseDataElement(value=torch.ones((3, 3)))

setting the pseudo_label in selfsup_data_sample
selfsup_data_sample.pseudo_label = InstanceData(location=torch.tensor([1, 2, 3]))

After creating these attributes, you can easily fetch values in these attributes
print(selfsup_data_sample.gt_label.value)
tensor([1])
print(selfsup_data_sample.mask.value.shape)
torch.Size([3, 3])

6.2.2 Pack data to SelfSupDataSample in MMSelfSup

Before feeding data into model, MMSelfSup packs data into SelfSupDataSample in data pipeline. If you are not
familiar with data pipeline, you can consult data transform. To pack data, we implement a data transform, called
PackSelfSupInputs

class PackSelfSupInputs(BaseTransform):
"""Pack data into the format compatible with the inputs of algorithm.

Required Keys:

- img

Added Keys:

- data_sample
- inputs

Args:
key (str): The key of image inputted into the model. Defaults to 'img'.
algorithm_keys (List[str]): Keys of elements related

to algorithms, e.g. mask. Defaults to [].
pseudo_label_keys (List[str]): Keys set to be the attributes of

pseudo_label. Defaults to [].
meta_keys (List[str]): The keys of meta info of an image.

Defaults to [].
"""

def __init__(self,
key: Optional[str] = 'img',
algorithm_keys: Optional[List[str]] = [],

(continues on next page)

48 Chapter 6. Basic Concepts

https://github.com/open-mmlab/mmcv/blob/transforms/docs/zh_cn/understand_mmcv/data_transform.md

MMSelfSup, Release 1.0.0rc6

(continued from previous page)

pseudo_label_keys: Optional[List[str]] = [],
meta_keys: Optional[List[str]] = []) -> None:

assert isinstance(key, str), f'key should be the type of str, instead \
of {type(key)}.'

self.key = key
self.algorithm_keys = algorithm_keys
self.pseudo_label_keys = pseudo_label_keys
self.meta_keys = meta_keys

def transform(self,
results: Dict) -> Dict[torch.Tensor, SelfSupDataSample]:

"""Method to pack the data.

Args:
results (Dict): Result dict from the data pipeline.

Returns:
Dict:

- 'inputs' (List[torch.Tensor]): The forward data of models.
- 'data_sample' (SelfSupDataSample): The annotation info of the

the forward data.
"""
packed_results = dict()
if self.key in results:

img = results[self.key]
if img is not a list, convert it to a list
if not isinstance(img, List):

img = [img]
for i, img_ in enumerate(img):

if len(img_.shape) < 3:
img_ = np.expand_dims(img_, -1)

img_ = np.ascontiguousarray(img_.transpose(2, 0, 1))
img[i] = to_tensor(img_)

packed_results['inputs'] = img

data_sample = SelfSupDataSample()
if len(self.pseudo_label_keys) > 0:

pseudo_label = InstanceData()
data_sample.pseudo_label = pseudo_label

gt_label, sample_idx, mask, pred_label will be set here
for key in self.algorithm_keys:

self.set_algorithm_keys(data_sample, key, results)

keys, except for gt_label, sample_idx, mask, pred_label, will be
set as the attributes of pseudo_label
for key in self.pseudo_label_keys:

convert data to torch.Tensor
value = to_tensor(results[key])
setattr(data_sample.pseudo_label, key, value)

(continues on next page)

6.2. Structures 49

MMSelfSup, Release 1.0.0rc6

(continued from previous page)

img_meta = {}
for key in self.meta_keys:

img_meta[key] = results[key]
data_sample.set_metainfo(img_meta)
packed_results['data_sample'] = data_sample

return packed_results

@classmethod
def set_algorithm_keys(self, data_sample: SelfSupDataSample, key: str,

results: Dict) -> None:
"""Set the algorithm keys of SelfSupDataSample."""
value = to_tensor(results[key])
if key == 'sample_idx':

sample_idx = InstanceData(value=value)
setattr(data_sample, 'sample_idx', sample_idx)

elif key == 'mask':
mask = InstanceData(value=value)
setattr(data_sample, 'mask', mask)

elif key == 'gt_label':
gt_label = LabelData(value=value)
setattr(data_sample, 'gt_label', gt_label)

elif key == 'pred_label':
pred_label = LabelData(value=value)
setattr(data_sample, 'pred_label', pred_label)

else:
raise AttributeError(f'{key} is not a attribute of \

SelfSupDataSample')

algorithm_keys are these attributes, except for pseudo_label, in SelfSupDataSample and pseudo_label_keys
are these sub-keys in pseudo_label of SelfSupDataSample. Thank you for reading the whole tutorial. If you have any
problems, you can raise an issue in GitHub, and we will reach you as soon as possible.

6.3 Models

• Models

– Overview of modules in MMSelfSup

– Construct algorithms from sub-modules

– Overview these abstract functions in base model

Model can be seen as a feature extractor or loss generator for each algorithm. In MMSelfSup, it mainly contains the
following fix parts,

• algorithms, containing the full modules of a model and all sub-modules will be constructed in algorithms.

• backbones, containing the backbones for each algorithm, e.g. ViT for MAE, and Swim Transformer for SimMIM.

• necks, some specifial modules, such as decoder, appended directly to the output of the backbone.

• heads, some specifial modules, such as mlp layers, appended to the output of the backbone or neck.

50 Chapter 6. Basic Concepts

MMSelfSup, Release 1.0.0rc6

• memories, some memory banks or queues in some algorithms, e.g. MoCo v1/v2.

• losses, used to compute the loss between the predicted output and the target.

• target_generators, generating targets for self-supervised learning optimization, such as HOG, extracted features
from other modules(DALL-E, CLIP), etc.

6.3.1 Overview of modules in MMSelfSup

First, we will give an overview about existing modules in MMSelfSup. They will be displayed according to the cate-
gories described above.

6.3.2 Construct algorithms from sub-modules

Just as shown in above table, each algorithm is a combination of backbone, neck, head, loss and memories. You are
free to use these existing modules to build your own algorithms. If some customized modules are required, you should
follow add_modules to meet your own need. MMSelfSup provides a base model, called BaseModel, and all algorithms
should inherit this base model. And all sub-modules, except for memories, will be built in the base model, during the
initialization of each algorithm. Memories will be built in the __init__ of each specific algorithm. And loss will be
built when building the head.

class BaseModel(_BaseModel):

def __init__(self,
backbone: dict,
neck: Optional[dict] = None,
head: Optional[dict] = None,
target_generator: Optional[dict] = None,
pretrained: Optional[str] = None,
data_preprocessor: Optional[Union[dict, nn.Module]] = None,
init_cfg: Optional[dict] = None):

if pretrained is not None:
init_cfg = dict(type='Pretrained', checkpoint=pretrained)

if data_preprocessor is None:
data_preprocessor = {}

The build process is in MMEngine, so we need to add scope here.
data_preprocessor.setdefault('type',

'mmselfsup.SelfSupDataPreprocessor')

super().__init__(
init_cfg=init_cfg, data_preprocessor=data_preprocessor)

self.backbone = MODELS.build(backbone)

if neck is not None:
self.neck = MODELS.build(neck)

if head is not None:
self.head = MODELS.build(head)

6.3. Models 51

MMSelfSup, Release 1.0.0rc6

Just as shown above, you should provide the config to build the backbone, but neck and head are optional. In addition
to building your algorithm, you should overwrite some abstract functions in the base model to get the correct results,
which we will discuss in the following section.

6.3.3 Overview these abstract functions in base model

The forward function is the entrance to the results. However, it is different from the default forward function in most
PyTorch code, which only has one mode. You will mess all your logic in the forward function, limiting the scalability.
Just as shown in the code below, forward function in MMSelfSup has three modes, i) tensor, ii) loss and iii) predict.

def forward(self,
batch_inputs: torch.Tensor,
data_samples: Optional[List[SelfSupDataSample]] = None,
mode: str = 'tensor'):

if mode == 'tensor':
feats = self.extract_feat(batch_inputs)
return feats

elif mode == 'loss':
return self.loss(batch_inputs, data_samples)

elif mode == 'predict':
return self.predict(batch_inputs, data_samples)

else:
raise RuntimeError(f'Invalid mode "{mode}".')

• tensor, if the mode is tensor, the forward function will return the extracted features for images. You should
overwrite the extract_feat to implement your customized extracting process.

• loss, if the mode is loss, the forward function will return the loss between the prediction and the target. You
should overview the loss to implement your customized loss function.

• predict, if the mode is predict, the forward function will return the prediction, e.g. the predicted label, from
your algorithm. If should also overwrite the predict function.

Now we have introduce the basic components related to models in MMSelfSup, if you want to dive in , please refer the
API doc of each algorithm.

6.4 Datasets

• Datasets

– Datasets

∗ Refactor your datasets

∗ Use datasets from other MM-repos in your config

– Samplers

– Transforms

The datasets folder under mmselfsup contains all kinds of modules, related to loading data. It can be roughly split
into three parts, namely,

• cutomized datasets to read images

• cutomized dataset samplers to read index before loading images

• data transforms, e.g. RandomResizedCrop, to augment data before feeding into models.

52 Chapter 6. Basic Concepts

MMSelfSup, Release 1.0.0rc6

In this tutorial, we will explain the above three parts in details.

6.4.1 Datasets

OpenMMLab provides a lot of off-the-shelf datasets, and all these datasets inherit the BaseDataset implemented in
MMEngine. To have a full knowledge about all these functionalities implemented in BaseDataset, we recommend
interested readers to refer to the documents in MMEngine. ImageNet, ADE20KDataset and CocoDataset are the
three commonly used datasets MMSelfSup. Before using them, you should refactor your local folder according to the
following format.

Refactor your datasets

To use these existing datasets, you need to refactor your datasets into following dataset format.

mmselfsup
mmselfsup
tools
configs
docs
data

imagenet
meta
train
val

ade
ADEChallengeData2016

annotations
training
validation

images
training
validation

coco
annotations
train2017
val2017
test2017

For more details about the annotation files and the structure of each subfolder, you can consult MMClassfication,
MMSegmentation and MMDetection.

6.4. Datasets 53

https://github.com/open-mmlab/mmengine/blob/429bb27972bee1a9f3095a4d5f6ac5c0b88ccf54/mmengine/dataset/base_dataset.py#L116
https://github.com/open-mmlab/mmengine
https://mmengine.readthedocs.io/en/latest/advanced_tutorials/basedataset.html
https://github.com/open-mmlab/mmclassification
https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmdetection

MMSelfSup, Release 1.0.0rc6

Use datasets from other MM-repos in your config

Use ImageNet dataset from MMClassification
Use ImageNet in your dataloader
For simplicity, we only provide the config related to importting ImageNet
from MMClassification, instead of the full configuration for the dataloader.
The ``mmcls`` prefix tells the ``Registry`` to search ``ImageNet`` in
MMClassification
train_dataloader=dict(dataset=dict(type='mmcls.ImageNet', ...), ...)

Use ADE20KDataset dataset from MMSegmentation
Use ADE20KDataset in your dataloader
For simplicity, we only provide the config related to importting ADE20KDataset
from MMSegmentation, instead of the full configuration for the dataloader.
The ``mmseg`` prefix tells the ``Registry`` to search ``ADE20KDataset`` in
MMSegmentation
train_dataloader=dict(dataset=dict(type='mmseg.ADE20KDataset', ...), ...)

Use CocoDataset in your dataloader
For simplicity, we only provide the config related to importting CocoDataset
from MMDetection, instead of the full configuration for the dataloader.
The ``mmdet`` prefix tells the ``Registry`` to search ``CocoDataset`` in
MMDetection
train_dataloader=dict(dataset=dict(type='mmdet.CocoDataset', ...), ...)

Use dataset in MMSelfSup, for example ``DeepClusterImageNet``
train_dataloader=dict(dataset=dict(type='DeepClusterImageNet', ...), ...)

Till now, we have introduced two key steps, in order to use existing datasets successfully. We hope you can grasp the
basic idea about how to use datasets in MMSelfSup. If you want to create you customized datasets, you can refer to
another useful document, add_datasets.

6.4.2 Samplers

In pytorch, Sampler is used to sample the index of data before loading. MMEngine has already implemented
DefaultSampler and InfiniteSampler. In most situation, we can directly use them, instead of implementing
customized sampler. But the DeepClusterSampler is a special case, in which we implement the unique index sam-
pling logic. We recommend interested user to refer to the API doc for more details about this sampler. If you want
to implement your customized sampler, you can follow DeepClusterSamplerand implement it under the folder of
samplers.

6.4.3 Transforms

In short, transform refer to data augmentation in MM-repos and we compose a series of transforms into a list, called
pipeline. MMCV already provides some useful transforms, covering most of scenarios. But every MM-repo defines
their own transforms, following the User Guide in MMCV. Concretely, every customized dataset: i) inherits BaseTrans-
form, ii) overwrite the transform function and implement your key logic in it. In MMSelfSup, we implement these
transforms below:

For interested users, you can refer to the API doc to have a full understanding of these transforms. Now, we have
introduced the basic concepts about transform. If you want to know how to use them in your config or implement your
customed transforms, you can refer to transforms and add_transforms.

54 Chapter 6. Basic Concepts

https://github.com/open-mmlab/mmcv/blob/dev-2.x/docs/zh_cn/understand_mmcv/data_transform.md
https://github.com/open-mmlab/mmcv/blob/19a024155a0b710568c2faeae07dead2a5550392/mmcv/transforms/base.py#L6
https://github.com/open-mmlab/mmcv/blob/19a024155a0b710568c2faeae07dead2a5550392/mmcv/transforms/base.py#L6

MMSelfSup, Release 1.0.0rc6

6.5 Transforms

• Transforms

– Overview of transforms

– Introduction of MultiView

– Introduction of PackSelfSupInputs

6.5.1 Overview of transforms

We have introduced how to build a Pipeline in add_transforms. A Pipeline contains a series of transforms.
There are three main categories of transforms in MMSelfSup:

1. Transforms about processing the data. The unique transforms in MMSelfSup are defined in processing.py, e.g.
RandomCrop, RandomResizedCrop and RandomGaussianBlur. We may also use some transforms from other
repositories, e.g. LoadImageFromFile from MMCV.

2. The transform wrapper for multiple views of an image. It is defined in wrappers.py.

3. The transform to pack data into a format compatible with the inputs of the algorithm. It is defined in formatting.py.

In summary, we implement these transforms below. The last two transforms will be introduced in detail.

6.5.2 Introduction of MultiView

We build a wrapper named MultiView for some algorithms e.g. MOCO, SimCLR and SwAV with multi-view image
inputs. In the config file, we can define it as:

pipeline = [
dict(type='MultiView',

num_views=2,
transforms=[
[dict(type='Resize', scale=224),]

])
]

, which means that there are two views in the pipeline.

We can also define pipeline with different views like:

pipeline = [
dict(type='MultiView',

num_views=[2, 6],
transforms=[
[
dict(type='Resize', scale=224)],

[
dict(type='Resize', scale=224),
dict(type='RandomSolarize')],

])
]

This means that there are two pipelines, which contain 2 views and 6 views, respectively. More examples can be found
in imagenet_mocov1.py, imagenet_mocov2.py and imagenet_swav_mcrop-2-6.py etc.

6.5. Transforms 55

https://github.com/open-mmlab/mmselfsup/blob/main/mmselfsup/datasets/transforms/processing.py
https://github.com/open-mmlab/mmselfsup/blob/main/mmselfsup/datasets/transforms/wrappers.py
https://github.com/open-mmlab/mmselfsup/blob/main/mmselfsup/datasets/transforms/formatting.py
https://github.com/open-mmlab/mmselfsup/blob/main/configs/selfsup/_base_/datasets/imagenet_mocov1.py
https://github.com/open-mmlab/mmselfsup/blob/main/configs/selfsup/_base_/datasets/imagenet_mocov2.py
https://github.com/open-mmlab/mmselfsup/blob/main/configs/selfsup/_base_/datasets/imagenet_swav_mcrop-2-6.py

MMSelfSup, Release 1.0.0rc6

6.5.3 Introduction of PackSelfSupInputs

We build a class named PackSelfSupInputs to pack data into a format compatible with the inputs of an algorithm.
This transform is usually put at the end of the pipeline like:

train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='MultiView', num_views=2, transforms=[view_pipeline]),
dict(type='PackSelfSupInputs', meta_keys=['img_path'])

]

6.6 Evaluation

• Evaluation

– Evaluation in MMEngine

∗ Online evaluation

∗ Offline evaluation

– Evaluation In MMSelfSup

– Customize Evaluation

6.6.1 Evaluation in MMEngine

During model validation and testing, quantitative evaluation is often required. Metric and Evaluator have been
implemented in MMEngine to perform this function. See MMEngine Doc.

Model evaluation is divided into online evaluation and offline evaluation.

Online evaluation

Online evaluation is used in ValLoop and TestLoop.

Take ValLoop for example:

...
class ValLoop(BaseLoop):

...
def run(self) -> dict:

"""Launch validation."""
self.runner.call_hook('before_val')
self.runner.call_hook('before_val_epoch')
self.runner.model.eval()
for idx, data_batch in enumerate(self.dataloader):

self.run_iter(idx, data_batch)

compute metrics
metrics = self.evaluator.evaluate(len(self.dataloader.dataset))
self.runner.call_hook('after_val_epoch', metrics=metrics)
self.runner.call_hook('after_val')

(continues on next page)

56 Chapter 6. Basic Concepts

https://mmengine.readthedocs.io/en/latest/design/evaluation.html
https://github.com/open-mmlab/mmengine/blob/main/mmengine/runner/loops.py#L300
https://github.com/open-mmlab/mmengine/blob/main/mmengine/runner/loops.py#L373

MMSelfSup, Release 1.0.0rc6

(continued from previous page)

return metrics

@torch.no_grad()
def run_iter(self, idx, data_batch: Sequence[dict]):

...
self.runner.call_hook(

'before_val_iter', batch_idx=idx, data_batch=data_batch)
outputs should be sequence of BaseDataElement
with autocast(enabled=self.fp16):

outputs = self.runner.model.val_step(data_batch)
self.evaluator.process(data_samples=outputs, data_batch=data_batch)
self.runner.call_hook(

'after_val_iter',
batch_idx=idx,
data_batch=data_batch,
outputs=outputs)

Offline evaluation

Offline evaluation uses the predictions saved in a file. In this case, since there is no Runner, we need to build the
Evaluator and call offline_evaluate() function.

An example:

from mmengine.evaluator import Evaluator
from mmengine.fileio import load

evaluator = Evaluator(metrics=dict(type='Accuracy', top_k=(1, 5)))

data = load('test_data.pkl')
predictions = load('prediction.pkl')

results = evaluator.offline_evaluate(data, predictions, chunk_size=128)

6.6.2 Evaluation In MMSelfSup

During pretrain, validation and testing are not included, so it is no need to use evaluation.

During benchmark, the pre-trained models need other downstream tasks to evaluate the performance, e.g. classification,
detection, segmentation, etc. It is recommended to run downstream tasks with other OpenMMLab repos, such as
MMClassification or MMDetection, which have already implemented their own evaluation functionalities.

But MMSelfSup also implements some custom evaluation functionalities to support downstream tasks, shown as below:

• knn_classifier()

It compute accuracy of knn classifier predictions, and is used in KNN evaluation.

...
top1, top5 = knn_classifier(train_feats, train_labels, val_feats,

val_labels, k, args.temperature)
...

6.6. Evaluation 57

https://github.com/open-mmlab/mmselfsup/blob/main/tools/benchmarks/classification/knn_imagenet/test_knn.py#L179

MMSelfSup, Release 1.0.0rc6

• ResLayerExtraNorm

It add extra norm to original ResLayer, and is used in mmdetection benchmark config.

model = dict(
backbone=...,
roi_head=dict(

shared_head=dict(
type='ResLayerExtraNorm',
norm_cfg=norm_cfg,
norm_eval=False,
style='pytorch')))

6.6.3 Customize Evaluation

Custom Metric and Evaluator are also supported, see MMEngine Doc

6.7 Engine

• Engine

– Hook

∗ Introduction

∗ Default hooks

∗ Common Hooks implemented in MMEngine

∗ Hooks implemented in MMSelfsup

– Optimizer

∗ Optimizer

· Customize optimizer supported by PyTorch

· Parameter-wise configuration

· Implemented optimizers in MMSelfsup

∗ Optimizer wrapper

· Gradient clipping

· Gradient accumulation

· Automatic mixed precision(AMP) training

∗ Constructor

· Constructors implemented in MMSelfsup

58 Chapter 6. Basic Concepts

https://mmengine.readthedocs.io/en/latest/design/evaluation.html

MMSelfSup, Release 1.0.0rc6

6.7.1 Hook

Introduction

The hook mechanism is widely used in the OpenMMLab open-source algorithm library. Inserted in the Runner, the
entire life cycle of the training process can be managed easily. You can learn more about the hook through related
article.

Hooks only work after being registered into the runner. At present, hooks are mainly divided into two categories:

• default hooks

Those hooks are registered by the runner by default. Generally, they fulfill some basic functions, and have default
priority, you don’t need to modify the priority.

• custom hooks

The custom hooks are registered through custom_hooks. Generally, they are hooks with enhanced functions. The
priority needs to be specified in the configuration file. If you do not specify the priority of the hook, it will be set to
‘NORMAL’ by default.

Priority list:
The priority determines the execution order of the hooks. Before training, the log will print out the execution order of
the hooks at each stage to facilitate debugging.

Default hooks

The following common hooks are already reigistered by default, which is implemented through
register_default_hooks in MMEngine:

Common Hooks implemented in MMEngine

Some hooks have been already implemented in MMEngine, they are:

Hooks implemented in MMSelfsup

Some hooks have been already implemented in MMSelfsup, they are:

• DeepClusterHook

• DenseCLHook

• ODCHook

• SimSiamHook

• SwAVHook

•

An example:

Take DenseCLHook for example, this hook includes loss_lambda warmup in DenseCL.

loss_lambda is loss weight for the single and dense contrastive loss. Defaults to 0.5.

6.7. Engine 59

https://www.calltutors.com/blog/what-is-hook/
https://www.calltutors.com/blog/what-is-hook/
https://github.com/open-mmlab/mmselfsup/blob/main/configs/selfsup/_base_/default_runtime.py#L3
https://github.com/open-mmlab/mmengine/blob/main/mmengine/runner/runner.py#L1750

MMSelfSup, Release 1.0.0rc6

losses = dict()
losses['loss_single'] = loss_single * (1 - self.loss_lambda)
losses['loss_dense'] = loss_dense * self.loss_lambda

DenseCLHook is implemented as follows:

...
@HOOKS.register_module()
class DenseCLHook(Hook):
...

def before_train_iter(self,
runner,
batch_idx: int,
data_batch: Optional[Sequence[dict]] = None) -> None:

...
cur_iter = runner.iter
if cur_iter >= self.start_iters:

get_model(runner.model).loss_lambda = self.loss_lambda
else:

get_model(runner.model).loss_lambda = 0.

If the hook is already implemented in MMEngine or MMSelfsup, you can directly modify the config to use the hook
as below

custom_hooks = [
dict(type='MMEngineHook', a=a_value, b=b_value, priority='NORMAL')

]

such as using DenseCLHook, start_iters is 500:

custom_hooks = [
dict(type='DenseCLHook', start_iters=500)

]

6.7.2 Optimizer

We will introduce Optimizer section through 3 different parts: Optimizer, Optimizer wrapper, and Constructor.

Optimizer

Customize optimizer supported by PyTorch

We have already supported all the optimizers implemented by PyTorch, see mmengine/optim/optimizer/builder.
py. To use and modify them, please change the optimizer field of config files.

For example, if you want to use SGD, the modification could be as the following.

optimizer = dict(type='SGD', lr=0.0003, weight_decay=0.0001)

To modify the learning rate of the model, just modify the lr in the config of optimizer. You can also directly set other
arguments according to the API doc of PyTorch.

60 Chapter 6. Basic Concepts

https://pytorch.org/docs/stable/optim.html?highlight=optim#module-torch.optim

MMSelfSup, Release 1.0.0rc6

For example, if you want to use Adam with the setting like torch.optim.Adam(params, lr=0.001, betas=(0.9,
0.999), eps=1e-08, weight_decay=0, amsgrad=False) in PyTorch, the config should looks like:

optimizer = dict(type='Adam', lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0,␣
→˓amsgrad=False)

Parameter-wise configuration

Some models may have some parameter-specific settings for optimization, for example, no weight decay to the Batch-
Norm layer and the bias in each layer. To finely configure them, we can use the paramwise_cfg in optimizer.

For example, in MAE, we do not want to apply weight decay to the parameters of ln, bias, pos_embed, mask_token
and cls_token, so we can use following config file:

optimizer = dict(
type='AdamW', lr=1.5e-4 * 4096 / 256, betas=(0.9, 0.95), weight_decay=0.05)

optim_wrapper = dict(
type='OptimWrapper',
optimizer=optimizer,
paramwise_cfg=dict(

custom_keys={
'ln': dict(decay_mult=0.0),
'bias': dict(decay_mult=0.0),
'pos_embed': dict(decay_mult=0.),
'mask_token': dict(decay_mult=0.),
'cls_token': dict(decay_mult=0.)

}))

Implemented optimizers in MMSelfsup

• LARS

In addition to optimizers implemented by PyTorch, we also implement a customized LARS in mmselfsup/engine/
optimizers/lars.py. It implements layer-wise adaptive rate scaling for SGD.

optimizer = dict(type='LARS', lr=4.8, momentum=0.9, weight_decay=1e-6)

Optimizer wrapper

Besides the basic function of PyTorch optimizers, we also provide some enhancement functions, such as gradient
clipping, gradient accumulation, automatic mixed precision training, etc. Please refer to MMEngine for more details.

6.7. Engine 61

https://github.com/open-mmlab/mmengine/blob/main/mmengine/optim/optimizer/optimizer_wrapper.py

MMSelfSup, Release 1.0.0rc6

Gradient clipping

Currently we support clip_grad option in optim_wrapper, and you can refer to OptimWrapper and PyTorch Docu-
mentationfor more arguments . Here is an example:

optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optim_wrapper = dict(

type='OptimWrapper',
optimizer=optimizer,

clip_grad=dict(
max_norm=0.2,
norm_type=2))

norm_type: type of the used p-norm, here norm_type is 2.

If clip_grad is not None, it will be the arguments of torch.nn.utils.clip_grad.clip_grad_norm_().

Gradient accumulation

When there is not enough computation resource, the batch size can only be set to a small value, which may degrade the
performance of model. Gradient accumulation can be used to solve this problem.

Here is an example:

train_dataloader = dict(batch_size=64)
optim_wrapper = dict(

type='OptimWrapper',
optimizer=optimizer,
accumulative_counts=4)

Indicates that during training, back-propagation is performed every 4 iters. And the above is equivalent to:

train_dataloader = dict(batch_size=256)
optim_wrapper = dict(

type='OptimWrapper',
optimizer=optimizer,
accumulative_counts=1)

Automatic mixed precision(AMP) training

optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optim_wrapper = dict(type='AmpOptimWrapper', optimizer=optimizer)

The default setting of loss_scale of AmpOptimWrapper is dynamic.

62 Chapter 6. Basic Concepts

https://github.com/open-mmlab/mmengine/blob/main/mmengine/optim/optimizer/optimizer_wrapper.py#L17
https://pytorch.org/docs/stable/generated/torch.nn.utils.clip_grad_norm_.html
https://pytorch.org/docs/stable/generated/torch.nn.utils.clip_grad_norm_.html

MMSelfSup, Release 1.0.0rc6

Constructor

The constructor aims to build optimizer, optimizer wrapper and customize hyper-parameters of different layers. The
key paramwise_cfg of optim_wrapper in configs controls this customization.

Constructors implemented in MMSelfsup

• LearningRateDecayOptimWrapperConstructor

LearningRateDecayOptimWrapperConstructor sets different learning rates for different layers of backbone. Note:
Currently, this optimizer constructor is built for ViT , Swin and MixMIN.

An example:

optim_wrapper = dict(
type='AmpOptimWrapper',
optimizer=dict(

type='AdamW', lr=5e-3, model_type='swin', layer_decay_rate=0.9),
clip_grad=dict(max_norm=5.0),
paramwise_cfg=dict(

norm_decay_mult=0.0,
bias_decay_mult=0.0,
custom_keys={

'.absolute_pos_embed': dict(decay_mult=0.0),
'.relative_position_bias_table': dict(decay_mult=0.0)

}),
constructor='mmselfsup.LearningRateDecayOptimWrapperConstructor')

Note: paramwise_cfg only supports the customization of weight_decay in
LearningRateDecayOptimWrapperConstructor.

6.8 Conventions

Please check the following conventions if you would like to modify MMSelfSup as your own project.

6.8.1 Losses

When the algorithm is implemented, the returned losses is supposed to be dict type.

Take MAE as an example:

class MAE(BaseModel):
"""MAE.

Implementation of `Masked Autoencoders Are Scalable Vision Learners
<https://arxiv.org/abs/2111.06377>`_.
"""

def extract_feat(self, inputs: List[torch.Tensor],
**kwarg) -> Tuple[torch.Tensor]:

...
(continues on next page)

6.8. Conventions 63

MMSelfSup, Release 1.0.0rc6

(continued from previous page)

def loss(self, inputs: List[torch.Tensor],
data_samples: List[SelfSupDataSample],
**kwargs) -> Dict[str, torch.Tensor]:

"""The forward function in training.

Args:
inputs (List[torch.Tensor]): The input images.
data_samples (List[SelfSupDataSample]): All elements required

during the forward function.

Returns:
Dict[str, torch.Tensor]: A dictionary of loss components.

"""
ids_restore: the same as that in original repo, which is used
to recover the original order of tokens in decoder.
latent, mask, ids_restore = self.backbone(inputs[0])
pred = self.neck(latent, ids_restore)
loss = self.head(pred, inputs[0], mask)
losses = dict(loss=loss)
return losses

The MAE.loss() function will be called during model forward to compute the loss and return its value.

By default, only values whose keys contain 'loss'will be back propagated, if your algorithm need more than one loss
value, you could pack losses dict with several keys:

class YourAlgorithm(BaseModel):

def loss():
...

losses['loss_1'] = loss_1
losses['loss_2'] = loss_2

64 Chapter 6. Basic Concepts

CHAPTER

SEVEN

COMPONENT CUSTOMIZATION

7.1 Add Modules

In this tutorial, we introduce the basic steps to create your customized modules. Before learning to create your cus-
tomized modules, it is recommended to learn the basic concept of models in file models.md. You can customize all the
components introduced in models.md, such as backbone, neck, head and loss.

• Add Modules

– Add a new backbone

– Add a new neck

– Add a new head

– Add a new loss

– Combine all

7.1.1 Add a new backbone

Assume you are going to create a new backbone NewBackbone.

1. Create a new file mmselfsup/models/backbones/new_backbone.py and implement NewBackbone in it.

import torch.nn as nn

from mmselfsup.registry import MODELS

@MODELS.register_module()
class NewBackbone(nn.Module):

def __init__(self, *args, **kwargs):
pass

def forward(self, x): # should return a tuple
pass

def init_weights(self):
pass

(continues on next page)

65

MMSelfSup, Release 1.0.0rc6

(continued from previous page)

def train(self, mode=True):
pass

2. Import the new backbone module in mmselfsup/models/backbones/__init__.py.

...
from .new_backbone import NewBackbone

__all__ = [
...,
'NewBackbone',
...

]

3. Use it in your config file.

model = dict(
...
backbone=dict(

type='NewBackbone',
...),

...
)

7.1.2 Add a new neck

You can write a new neck inherited from BaseModule from mmengine, and overwrite forward. We have a uni-
fied interface for weight initialization in mmengine, you can use init_cfg to specify the initialization function and
arguments, or overwrite init_weights if you prefer customized initialization.

We include all necks in mmselfsup/models/necks. Assume you are going to create a new neck NewNeck.

1. Create a new file mmselfsup/models/necks/new_neck.py and implement NewNeck in it.

from mmengine.model import BaseModule

from mmselfsup.registry import MODELS

@MODELS.register_module()
class NewNeck(BaseModule):

def __init__(self, *args, **kwargs):
super().__init__()
pass

def forward(self, x):
pass

You need to implement the forward function, which applies some operations on the output from the backbone and
forwards the results to the head.

2. Import the new neck module in mmselfsup/models/necks/__init__.py.

66 Chapter 7. Component Customization

MMSelfSup, Release 1.0.0rc6

...
from .new_neck import NewNeck

__all__ = [
...,
'NewNeck',
...

]

3. Use it in your config file.

model = dict(
...
neck=dict(

type='NewNeck',
...),

...
)

7.1.3 Add a new head

You can write a new head inherited from BaseModule from mmengine, and overwrite forward.

We include all heads in mmselfsup/models/heads. Assume you are going to create a new head NewHead.

1. Create a new file mmselfsup/models/heads/new_head.py and implement NewHead in it.

from mmengine.model import BaseModule

from mmselfsup.registry import MODELS

@MODELS.register_module()
class NewHead(BaseModule):

def __init__(self, loss, **kwargs):
super().__init__()
build loss
self.loss = MODELS.build(loss)
other specific initializations

def forward(self, *args, **kwargs):
pass

You need to implement the forward function, which applies some operations on the output from the neck/backbone
and computes the loss. Please note that the loss module should be built in the head module for the loss computation.

2. Import the new head module in mmselfsup/models/heads/__init__.py.

...
from .new_head import NewHead

__all__ = [
(continues on next page)

7.1. Add Modules 67

MMSelfSup, Release 1.0.0rc6

(continued from previous page)

...,
'NewHead',
...

]

3. Use it in your config file.

model = dict(
...
head=dict(

type='NewHead',
...),

...
)

7.1.4 Add a new loss

To add a new loss function, we mainly implement the forward function in the loss module. We should register the
loss module as MODELS as well.

We include all losses in mmselfsup/models/losses. Assume you are going to create a new loss NewLoss.

1. Create a new file mmselfsup/models/losses/new_loss.py and implement NewLoss in it.

from mmengine.model import BaseModule

from mmselfsup.registry import MODELS

@MODELS.register_module()
class NewLoss(BaseModule):

def __init__(self, *args, **kwargs):
super().__init__()
pass

def forward(self, *args, **kwargs):
pass

2. Import the new loss module in mmselfsup/models/losses/__init__.py

...
from .new_loss import NewLoss

__all__ = [
...,
'NewLoss',
...

]

3. Use it in your config file.

68 Chapter 7. Component Customization

MMSelfSup, Release 1.0.0rc6

model = dict(
...
head=dict(

...
loss=dict(

type='NewLoss',
...),

...),
...

)

7.1.5 Combine all

After creating each component mentioned above, we need to create a new algorithm NewAlgorithm to organize them
logically. NewAlgorithm takes raw images as inputs and outputs the loss to the optimizer.

1. Create a new file mmselfsup/models/algorithms/new_algorithm.py and implement NewAlgorithm in
it.

from mmselfsup.registry import MODELS
from .base import BaseModel

@MODELS.register_module()
class NewAlgorithm(BaseModel):

def __init__(self, backbone, neck=None, head=None, init_cfg=None):
super().__init__(init_cfg)
pass

def extract_feat(self, inputs, **kwargs):
pass

def loss(self, inputs, data_samples, **kwargs):
pass

def predict(self, inputs, data_samples, **kwargs):
pass

2. Import the new algorithm module in mmselfsup/models/algorithms/__init__.py

...
from .new_algorithm import NewAlgorithm

__all__ = [
...,
'NewAlgorithm',
...

]

3. Use it in your config file.

7.1. Add Modules 69

MMSelfSup, Release 1.0.0rc6

model = dict(
type='NewAlgorithm',
backbone=...,
neck=...,
head=...,
...

)

7.2 Add Datasets

In this tutorial, we introduce the basic steps to create your customized dataset. Before learning to create your customized
datasets, it is recommended to learn the basic concept of datasets in file datasets.md.

• Add Datasets

– Step 1: Creating the Dataset

– Step 2: Add NewDataset to __init__py

– Step 3: Modify the config file

If your algorithm does not need any customized dataset, you can use these off-the-shelf datasets under datasets direc-
tory. But to use these existing datasets, you have to convert your dataset to existing dataset format.

As for image pretraining, it is recommended to follow the format of MMClassification.

7.2.1 Step 1: Creating the Dataset

You could implement a new dataset class, inherited from CustomDataset from MMClassification for image pretrain-
ing.

Assume the name of your Dataset is NewDataset, you can create a file, named new_dataset.py under mmselfsup/
datasets and implement NewDataset in it.

from typing import List, Optional, Union

from mmcls.datasets import CustomDataset

from mmselfsup.registry import DATASETS

@DATASETS.register_module()
class NewDataset(CustomDataset):

IMG_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif')

def __init__(self,
ann_file: str = '',
metainfo: Optional[dict] = None,
data_root: str = '',
data_prefix: Union[str, dict] = '',
**kwargs) -> None:

kwargs = {'extensions': self.IMG_EXTENSIONS, **kwargs}
(continues on next page)

70 Chapter 7. Component Customization

MMSelfSup, Release 1.0.0rc6

(continued from previous page)

super().__init__(
ann_file=ann_file,
metainfo=metainfo,
data_root=data_root,
data_prefix=data_prefix,
**kwargs)

def load_data_list(self) -> List[dict]:
Rewrite load_data_list() to satisfy your specific requirement.
The returned data_list could include any information you need from
data or transforms.

writing your code here
return data_list

7.2.2 Step 2: Add NewDataset to __init__py

Then, add NewDataset in mmselfsup/dataset/__init__.py. If it is not imported, the NewDataset will not be
registered successfully.

...
from .new_dataset import NewDataset

__all__ = [
..., 'NewDataset'

]

7.2.3 Step 3: Modify the config file

To use NewDataset, you can modify the config as the following:

train_dataloader = dict(
...
dataset=dict(

type='NewDataset',
data_root=your_data_root,
ann_file=your_data_root,
data_prefix=dict(img_path='train/'),
pipeline=train_pipeline))

7.2. Add Datasets 71

MMSelfSup, Release 1.0.0rc6

7.3 Add Transforms

In this tutorial, we introduce the basic steps to create your customized transforms. Before learning to create your
customized transforms, it is recommended to learn the basic concept of transforms in file transforms.md.

• Add Transforms

– Overview of Pipeline

– Creating a new transform in Pipeline

∗ Step 1: Creating the transform

∗ Step 2: Add NewTransform to __init__py

∗ Step 3: Modify the config file

7.3.1 Overview of Pipeline

Pipeline is an important component in Dataset, which is responsible for applying a series of data augmentations to
images, such as RandomResizedCrop, RandomFlip, etc.

Here is a config example of Pipeline for SimCLR training:

view_pipeline = [
dict(type='RandomResizedCrop', size=224, backend='pillow'),
dict(type='RandomFlip', prob=0.5),
dict(

type='RandomApply',
transforms=[

dict(
type='ColorJitter',
brightness=0.8,
contrast=0.8,
saturation=0.8,
hue=0.2)

],
prob=0.8),

dict(
type='RandomGrayscale',
prob=0.2,
keep_channels=True,
channel_weights=(0.114, 0.587, 0.2989)),

dict(type='RandomGaussianBlur', sigma_min=0.1, sigma_max=2.0, prob=0.5),
]

train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='MultiView', num_views=2, transforms=[view_pipeline]),
dict(type='PackSelfSupInputs', meta_keys=['img_path'])

]

Every augmentation in the Pipeline receives a dict as input and outputs a dict containing the augmented image
and other related information.

72 Chapter 7. Component Customization

MMSelfSup, Release 1.0.0rc6

7.3.2 Creating a new transform in Pipeline

Here are the steps to create a new transform.

Step 1: Creating the transform

Write a new transform in processing.py and overwrite the transform function, which takes a dict as input:

@TRANSFORMS.register_module()
class NewTransform(BaseTransform):

"""Docstring for transform.
"""

def transform(self, results: dict) -> dict:
apply transform
return results

Note: For the implementation of transforms, you could apply functions in mmcv.

Step 2: Add NewTransform to __init__py

Then, add the transform to __init__.py.

...
from .processing import NewTransform, ...

__all__ = [
..., 'NewTransform'

]

Step 3: Modify the config file

To use NewTransform, you can modify the config as the following:

view_pipeline = [
dict(type='RandomResizedCrop', size=224, backend='pillow'),
dict(type='RandomFlip', prob=0.5),
add `NewTransform`
dict(type='NewTransform'),
dict(

type='RandomApply',
transforms=[

dict(
type='ColorJitter',
brightness=0.8,
contrast=0.8,
saturation=0.8,
hue=0.2)

],
prob=0.8),

dict(
(continues on next page)

7.3. Add Transforms 73

https://github.com/open-mmlab/mmselfsup/tree/main/mmselfsup/datasets/transforms/processing.py
https://github.com/open-mmlab/mmcv/tree/2.x/mmcv/image
https://github.com/open-mmlab/mmselfsup/blob/main/mmselfsup/datasets/transforms/__init__.py

MMSelfSup, Release 1.0.0rc6

(continued from previous page)

type='RandomGrayscale',
prob=0.2,
keep_channels=True,
channel_weights=(0.114, 0.587, 0.2989)),

dict(type='RandomGaussianBlur', sigma_min=0.1, sigma_max=2.0, prob=0.5),
]

train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='MultiView', num_views=2, transforms=[view_pipeline]),
dict(type='PackSelfSupInputs', meta_keys=['img_path'])

]

7.4 Customize Runtime

• Customize Runtime

– Loop

– Hook

∗ Step 1: Create a new hook

∗ Step 2: Import the new hook

∗ Step 3: Modify the config

– Optimizer

∗ Optimizer Wrapper

∗ Constructor

– Scheduler

In this tutorial, we will introduce some methods about how to customize runtime settings for the project.

7.4.1 Loop

Loop means the workflow of training, validation or testing and we use train_cfg, val_cfg and test_cfg to build
Loop.

E.g.:

Use EpochBasedTrainLoop to train 200 epochs.
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=200)

MMEngine defines several basic loops. Users could implement customized loops if the defined loops are not satisfied.

74 Chapter 7. Component Customization

https://github.com/open-mmlab/mmengine/blob/main/mmengine/runner/loops.py

MMSelfSup, Release 1.0.0rc6

7.4.2 Hook

Before learning to create your customized hooks, it is recommended to learn the basic concept of hooks in file en-
gine.md.

Step 1: Create a new hook

Depending on your intention of this hook, you need to implement corresponding functions according to the hook point
of your expectation.

For example, if you want to modify the value of a hyper-parameter according to the training iter and two other hyper-
parameters after every train iter, you could implement a hook like:

Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional, Sequence

from mmengine.hooks import Hook

from mmselfsup.registry import HOOKS
from mmselfsup.utils import get_model

@HOOKS.register_module()
class NewHook(Hook):

"""Docstring for NewHook.
"""

def __init__(self, a: int, b: int) -> None:
self.a = a
self.b = b

def before_train_iter(self,
runner,
batch_idx: int,
data_batch: Optional[Sequence[dict]] = None) -> None:

cur_iter = runner.iter
get_model(runner.model).hyper_parameter = self.a * cur_iter + self.b

Step 2: Import the new hook

Then we need to ensure NewHook imported. Assuming NewHook is in mmselfsup/engine/hooks/new_hook.py,
modify mmselfsup/engine/hooks/__init__.py as below

...
from .new_hook import NewHook

__all__ = [..., NewHook]

7.4. Customize Runtime 75

MMSelfSup, Release 1.0.0rc6

Step 3: Modify the config

custom_hooks = [
dict(type='NewHook', a=a_value, b=b_value)

]

You can also set the priority of the hook as below:

custom_hooks = [
dict(type='NewHook', a=a_value, b=b_value, priority='ABOVE_NORMAL')

]

By default, the hook’s priority is set as NORMAL during registration.

7.4.3 Optimizer

Before customizing the optimizer config, it is recommended to learn the basic concept of optimizer in file engine.md.

Here is an example of SGD optimizer:

optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)

We support all optimizers of PyTorch. For more details, please refer to MMEngine optimizer document.

Optimizer Wrapper

Optimizer wrapper provides a unified interface for single precision training and automatic mixed precision training
with different hardware. Here is an example of optim_wrapper setting:

optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)

Besides, if you want to apply automatic mixed precision training, you could modify the config above like:

optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optim_wrapper = dict(type='AmpOptimWrapper', optimizer=optimizer)

The default setting of loss_scale of AmpOptimWrapper is dynamic.

Constructor

The constructor aims to build optimizer, optimizer wrapper and customize hyper-parameters of different layers. The
key paramwise_cfg of optim_wrapper in configs controls this customization.

The example and detailed information can be found in MMEngine optimizer document.

Besides, We could use custom_keys to set different hyper-parameters of different modules.

Here is the optim_wrapper example of MAE. The config below sets weight decay multiplication to be 0 of
pos_embed, mask_token, cls_token modules and those layers whose name contains ln and bias. During training,
the weight decay of these modules will be weight_decay * decay_mult.

76 Chapter 7. Component Customization

https://github.com/open-mmlab/mmengine/blob/main/docs/zh_cn/tutorials/optim_wrapper.md
https://github.com/open-mmlab/mmengine/blob/main/docs/zh_cn/tutorials/optim_wrapper.md

MMSelfSup, Release 1.0.0rc6

optimizer = dict(
type='AdamW', lr=1.5e-4 * 4096 / 256, betas=(0.9, 0.95), weight_decay=0.05)

optim_wrapper = dict(
type='OptimWrapper',
optimizer=optimizer,
paramwise_cfg=dict(

custom_keys={
'ln': dict(decay_mult=0.0),
'bias': dict(decay_mult=0.0),
'pos_embed': dict(decay_mult=0.),
'mask_token': dict(decay_mult=0.),
'cls_token': dict(decay_mult=0.)

}))

Furthermore, for some specific settings, we could use boolean type arguments to control the optimization process or
parameters. For example, here is an example config of SimCLR:

optimizer = dict(type='LARS', lr=0.3, momentum=0.9, weight_decay=1e-6)
optim_wrapper = dict(

type='OptimWrapper',
optimizer=optimizer,
paramwise_cfg=dict(

custom_keys={
'bn': dict(decay_mult=0, lars_exclude=True),
'bias': dict(decay_mult=0, lars_exclude=True),
bn layer in ResNet block downsample module
'downsample.1': dict(decay_mult=0, lars_exclude=True),

}))

In LARS optimizer, we have lars_exclude to decide whether the named layers apply the LARS optimization methods
or not.

7.4.4 Scheduler

Before customizing the scheduler config, it is recommended to learn the basic concept of scheduler in MMEngine
document.

Here is an example of scheduler:

param_scheduler = [
dict(

type='LinearLR',
start_factor=1e-4,
by_epoch=True,
begin=0,
end=40,
convert_to_iter_based=True),

dict(
type='CosineAnnealingLR',
T_max=360,
by_epoch=True,
begin=40,
end=400,

(continues on next page)

7.4. Customize Runtime 77

https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md
https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md

MMSelfSup, Release 1.0.0rc6

(continued from previous page)

convert_to_iter_based=True)
]

Note: When you change the max_epochs in train_cfg, make sure that the args in param_scheduler are modified
simultanuously.

78 Chapter 7. Component Customization

CHAPTER

EIGHT

MODEL ZOO STATISTICS

• Number of papers: 23

– Algorithm: 23

• Number of checkpoints: 75

– [Algorithm] Bootstrap your own latent: A new approach to self-supervised Learning (2 ckpts)

– [Algorithm] Deep clustering for unsupervised learning of visual features (1 ckpts)

– [Algorithm] Dense contrastive learning for self-supervised visual pre-training (2 ckpts)

– [Algorithm] Momentum Contrast for Unsupervised Visual Representation Learning (1 ckpts)

– [Algorithm] Improved Baselines with Momentum Contrastive Learning (2 ckpts)

– [Algorithm] An Empirical Study of Training Self-Supervised Vision Transformers (13 ckpts)

– [Algorithm] Unsupervised Feature Learning via Non-Parametric Instance Discrimination (2 ckpts)

– [Algorithm] Online deep clustering for unsupervised representation learning (1 ckpts)

– [Algorithm] Unsupervised visual representation learning by context prediction (2 ckpts)

– [Algorithm] Unsupervised representation learning by predicting image rotations (2 ckpts)

– [Algorithm] A simple framework for contrastive learning of visual representations (6 ckpts)

– [Algorithm] Exploring simple siamese representation learning (4 ckpts)

– [Algorithm] Unsupervised Learning of Visual Features by Contrasting Cluster Assignments (2 ckpts)

– [Algorithm] Masked Autoencoders Are Scalable Vision Learners (11 ckpts)

– [Algorithm] SimMIM: A Simple Framework for Masked Image Modeling (6 ckpts)

– [Algorithm] Barlow Twins: Self-Supervised Learning via Redundancy Reduction (2 ckpts)

– [Algorithm] Context Autoencoder for Self-Supervised Representation Learning (2 ckpts)

– [Algorithm] Masked Feature Prediction for Self-Supervised Visual Pre-Training (2 ckpts)

– [Algorithm] BEiT: BERT Pre-Training of Image Transformers (2 ckpts)

– [Algorithm] MILAN: Masked Image Pretraining on Language Assisted Representation (3 ckpts)

– [Algorithm] BEiT v2: Masked Image Modeling with Vector-Quantized Visual Tokenizers (2 ckpts)

– [Algorithm] EVA: Exploring the Limits of Masked Visual Representation Learning at Scale (3 ckpts)

– [Algorithm] MixMIM: Mixed and Masked Image Modeling for Efficient Visual Representation Learning (2
ckpts)

79

MMSelfSup, Release 1.0.0rc6

80 Chapter 8. Model Zoo Statistics

CHAPTER

NINE

MODEL ZOO

All models and part of benchmark results are recorded below.

• Model Zoo

– Benchmarks

∗ ImageNet

9.1 Benchmarks

9.1.1 ImageNet

ImageNet has multiple versions, but the most commonly used one is ILSVRC 2012. The classification results below
are reported by linear evaluation or fine-tuning with pre-trained weights provided by various algorithms.

81

MMSelfSup, Release 1.0.0rc6

82 Chapter 9. Model Zoo

CHAPTER

TEN

BARLOWTWINS

Barlow Twins: Self-Supervised Learning via Redundancy Reduction

10.1 Abstract

Self-supervised learning (SSL) is rapidly closing the gap with supervised methods on large computer vision bench-
marks. A successful approach to SSL is to learn embeddings which are invariant to distortions of the input sample.
However, a recurring issue with this approach is the existence of trivial constant solutions. Most current methods avoid
such solutions by careful implementation details. We propose an objective function that naturally avoids collapse by
measuring the cross-correlation matrix between the outputs of two identical networks fed with distorted versions of
a sample, and making it as close to the identity matrix as possible. This causes the embedding vectors of distorted
versions of a sample to be similar, while minimizing the redundancy between the components of these vectors. The
method is called Barlow Twins, owing to neuroscientist H. Barlow’s redundancy-reduction principle applied to a pair
of identical networks. Barlow Twins does not require large batches nor asymmetry between the network twins such
as a predictor network, gradient stopping, or a moving average on the weight updates. Intriguingly it benefits from
very high-dimensional output vectors. Barlow Twins outperforms previous methods on ImageNet for semi-supervised
classification in the low-data regime, and is on par with current state of the art for ImageNet classification with a linear
classifier head, and for transfer tasks of classification and object detection.

10.2 Models and Benchmarks

In this page, we provide benchmarks as much as possible to evaluate our pre-trained models. If not mentioned, all
models are pre-trained on ImageNet-1k dataset.

10.2.1 Classification

The classification benchmarks includes 1 downstream task datasets, ImageNet. If not specified, the results are Top-1
(%).

83

https://arxiv.org/abs/2103.03230

MMSelfSup, Release 1.0.0rc6

ImageNet Linear Evaluation

The Feature1 - Feature5 don’t have the GlobalAveragePooling, the feature map is pooled to the specific dimensions
and then follows a Linear layer to do the classification. Please refer to resnet50_mhead_8xb32-steplr-90e.py for details
of config.

ImageNet Nearest-Neighbor Classification

The results are obtained from the features after GlobalAveragePooling. Here, k=10 to 200 indicates different number
of nearest neighbors.

10.3 Citation

@inproceedings{zbontar2021barlow,
title={Barlow twins: Self-supervised learning via redundancy reduction},
author={Zbontar, Jure and Jing, Li and Misra, Ishan and LeCun, Yann and Deny, St{\'e}

→˓phane},
booktitle={International Conference on Machine Learning},
year={2021},

}

84 Chapter 10. BarlowTwins

https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/classification/imagenet/resnet50_mhead_linear-8xb32-steplr-90e_in1k.py

CHAPTER

ELEVEN

BEIT

BEiT: BERT Pre-Training of Image Transformers

11.1 Abstract

We introduce a self-supervised vision representation model BEiT, which stands for Bidirectional Encoder representation
from Image Transformers. Following BERT developed in the natural language processing area, we propose a masked
image modeling task to pretrain vision Transformers. Specifically, each image has two views in our pre-training, i.e,
image patches (such as 16x16 pixels), and visual tokens (i.e., discrete tokens). We first “tokenize” the original image
into visual tokens. Then we randomly mask some image patches and fed them into the backbone Transformer. The pre-
training objective is to recover the original visual tokens based on the corrupted image patches. After pre-training BEiT,
we directly fine-tune the model parameters on downstream tasks by appending task layers upon the pretrained encoder.
Experimental results on image classification and semantic segmentation show that our model achieves competitive
results with previous pre-training methods. For example, base-size BEiT achieves 83.2% top-1 accuracy on ImageNet-
1K, significantly outperforming from-scratch DeiT training (81.8%) with the same setup. Moreover, large-size BEiT
obtains 86.3% only using ImageNet-1K, even outperforming ViT-L with supervised pre-training on ImageNet-22K
(85.2%).

11.2 Models and Benchmarks

Here, we report the results of the model on ImageNet, the details are below:

11.3 Citation

@inproceedings{bao2022beit,
title={{BE}iT: {BERT} Pre-Training of Image Transformers},
author={Hangbo Bao and Li Dong and Songhao Piao and Furu Wei},
booktitle={International Conference on Learning Representations},
year={2022},

}

85

https://arxiv.org/abs/2106.08254

MMSelfSup, Release 1.0.0rc6

86 Chapter 11. BEiT

CHAPTER

TWELVE

BEIT V2

BEiT v2: Masked Image Modeling with Vector-Quantized Visual Tokenizers

12.1 Abstract

Masked image modeling (MIM) has demonstrated impressive results in self-supervised representation learning by
recovering corrupted image patches. However, most existing studies operate on low-level image pixels, which hinders
the exploitation of high-level semantics for representation models. In this work, we propose to use a semantic-rich
visual tokenizer as the reconstruction target for masked prediction, providing a systematic way to promote MIM from
pixel-level to semantic-level. Specifically, we propose vector-quantized knowledge distillation to train the tokenizer,
which discretizes a continuous semantic space to compact codes. We then pretrain vision Transformers by predicting
the original visual tokens for the masked image patches. Furthermore, we introduce a patch aggregation strategy which
associates discrete image patches to enhance global semantic representation. Experiments on image classification and
semantic segmentation show that BEiT v2 outperforms all compared MIM methods. On ImageNet-1K (224 size),
the base-size BEiT v2 achieves 85.5% top-1 accuracy for fine-tuning and 80.1% top-1 accuracy for linear probing.
The large-size BEiT v2 obtains 87.3% top-1 accuracy for ImageNet-1K (224 size) fine-tuning, and 56.7% mIoU on
ADE20K for semantic segmentation.

12.2 Models and Benchmarks

During trainig, the VQKD target generator will download VQ-KD model automatically. Besides, You could also down-
load VQ-KD model from this link manually.

Here, we report the results of the model on ImageNet, the details are below:

12.3 Citation

@article{beitv2,
title={{BEiT v2}: Masked Image Modeling with Vector-Quantized Visual Tokenizers},
author={Zhiliang Peng and Li Dong and Hangbo Bao and Qixiang Ye and Furu Wei},
journal={ArXiv},
year={2022}

}

87

https://arxiv.org/abs/2208.06366
https://download.openmmlab.com/mmselfsup/1.x/target_generator_ckpt/vqkd_encoder.pth

MMSelfSup, Release 1.0.0rc6

88 Chapter 12. BEiT v2

CHAPTER

THIRTEEN

BYOL

Bootstrap your own latent: A new approach to self-supervised Learning

13.1 Abstract

Bootstrap Your Own Latent (BYOL) is a new approach to self-supervised image representation learning. BYOL relies
on two neural networks, referred to as online and target networks, that interact and learn from each other. From an
augmented view of an image, we train the online network to predict the target network representation of the same
image under a different augmented view. At the same time, we update the target network with a slow-moving average
of the online network.

13.2 Models and Benchmarks

In this page, we provide benchmarks as much as possible to evaluate our pre-trained models. If not mentioned, all
models are pre-trained on ImageNet-1k dataset.

13.2.1 Classification

The classification benchmarks includes 4 downstream task datasets, VOC, ImageNet, iNaturalist2018 and Places205.
If not specified, the results are Top-1 (%).

VOC SVM / Low-shot SVM

The Best Layer indicates that the best results are obtained from which layers feature map. For example, if the Best
Layer is feature3, its best result is obtained from the second stage of ResNet (1 for stem layer, 2-5 for 4 stage layers).

Besides, k=1 to 96 indicates the hyper-parameter of Low-shot SVM.

89

https://arxiv.org/abs/2006.07733

MMSelfSup, Release 1.0.0rc6

ImageNet Linear Evaluation

The Feature1 - Feature5 don’t have the GlobalAveragePooling, the feature map is pooled to the specific dimensions
and then follows a Linear layer to do the classification. Please refer to resnet50_mhead_linear-8xb32-steplr-90e_in1k
for details of config.

Places205 Linear Evaluation

The Feature1 - Feature5 don’t have the GlobalAveragePooling, the feature map is pooled to the specific dimensions
and then follows a Linear layer to do the classification. Please refer to resnet50_mhead_8xb32-steplr-28e_places205.py
for details of config.

ImageNet Nearest-Neighbor Classification

The results are obtained from the features after GlobalAveragePooling. Here, k=10 to 200 indicates different number
of nearest neighbors.

13.2.2 Detection

The detection benchmarks includes 2 downstream task datasets, Pascal VOC 2007 + 2012 and COCO2017. This
benchmark follows the evluation protocols set up by MoCo.

Pascal VOC 2007 + 2012

Please refer to config for details.

COCO2017

Please refer to config for details.

13.2.3 Segmentation

The segmentation benchmarks includes 2 downstream task datasets, Cityscapes and Pascal VOC 2012 + Aug. It
follows the evluation protocols set up by MMSegmentation.

Pascal VOC 2012 + Aug

Please refer to config for details.

90 Chapter 13. BYOL

https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/classification/imagenet/resnet50_mhead_linear-8xb32-steplr-90e_in1k.py
https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/classification/places205/resnet50_mhead_8xb32-steplr-28e_places205.py
https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/mmdetection/voc0712/faster-rcnn_r50-c4_ms-24k_voc0712.py
https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/mmdetection/coco/mask-rcnn_r50_fpn_ms-1x_coco.py
https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/mmsegmentation/voc12aug/fcn_r50-d8_4xb4-20k_voc12aug-512x512.py

MMSelfSup, Release 1.0.0rc6

13.3 Citation

@inproceedings{grill2020bootstrap,
title={Bootstrap your own latent: A new approach to self-supervised learning},
author={Grill, Jean-Bastien and Strub, Florian and Altch{\'e}, Florent and Tallec,␣

→˓Corentin and Richemond, Pierre H and Buchatskaya, Elena and Doersch, Carl and Pires,␣
→˓Bernardo Avila and Guo, Zhaohan Daniel and Azar, Mohammad Gheshlaghi and others},
booktitle={NeurIPS},
year={2020}

}

13.3. Citation 91

MMSelfSup, Release 1.0.0rc6

92 Chapter 13. BYOL

CHAPTER

FOURTEEN

CAE

Context Autoencoder for Self-Supervised Representation Learning

14.1 Abstract

We present a novel masked image modeling (MIM) approach, context autoencoder (CAE), for self-supervised learning.
We randomly partition the image into two sets: visible patches and masked patches. The CAE architecture consists
of: (i) an encoder that takes visible patches as input and outputs their latent representations, (ii) a latent context re-
gressor that predicts the masked patch representations from the visible patch representations that are not updated in
this regressor, (iii) a decoder that takes the estimated masked patch representations as input and makes predictions
for the masked patches, and (iv) an alignment module that aligns the masked patch representation estimation with the
masked patch representations computed from the encoder. In comparison to previous MIM methods that couple the
encoding and decoding roles, e.g., using a single module in BEiT, our approach attempts to separate the encoding role
(content understanding) from the decoding role (making predictions for masked patches) using different modules, im-
proving the content understanding capability. In addition, our approach makes predictions from the visible patches to
the masked patches in the latent representation space that is expected to take on semantics. In addition, we present the
explanations about why contrastive pretraining and supervised pretraining perform similarly and why MIM potentially
performs better. We demonstrate the effectiveness of our CAE through superior transfer performance in downstream
tasks: semantic segmentation, and object detection and instance segmentation.

14.2 Prerequisite

Create a new folder cae_ckpt under the root directory and download the weights for dalle encoder to that folder

14.3 Models and Benchmarks

Here, we report the results of the model, which is pre-trained on ImageNet-1k for 300 epochs, the details are below:

93

https://arxiv.org/abs/2202.03026
https://download.openmmlab.com/mmselfsup/cae/dalle_encoder.pth

MMSelfSup, Release 1.0.0rc6

14.4 Citation

@article{CAE,
title={Context Autoencoder for Self-Supervised Representation Learning},
author={Xiaokang Chen, Mingyu Ding, Xiaodi Wang, Ying Xin, Shentong Mo,
Yunhao Wang, Shumin Han, Ping Luo, Gang Zeng, Jingdong Wang},
journal={ArXiv},
year={2022}

}

94 Chapter 14. CAE

CHAPTER

FIFTEEN

DEEPCLUSTER

Deep Clustering for Unsupervised Learning of Visual Features

15.1 Abstract

Clustering is a class of unsupervised learning methods that has been extensively applied and studied in computer vision.
Little work has been done to adapt it to the end-to-end training of visual features on large scale datasets. In this work,
we present DeepCluster, a clustering method that jointly learns the parameters of a neural network and the cluster
assignments of the resulting features. DeepCluster iteratively groups the features with a standard clustering algorithm,
k-means, and uses the subsequent assignments as supervision to update the weights of the network.

15.2 Models and Benchmarks

In this page, we provide benchmarks as much as possible to evaluate our pre-trained models. If not mentioned, all
models are pre-trained on ImageNet-1k dataset.

15.2.1 Classification

The classification benchmarks includes 4 downstream task datasets, VOC, ImageNet, iNaturalist2018 and Places205.
If not specified, the results are Top-1 (%).

VOC SVM / Low-shot SVM

The Best Layer indicates that the best results are obtained from which layers feature map. For example, if the Best
Layer is feature3, its best result is obtained from the second stage of ResNet (1 for stem layer, 2-5 for 4 stage layers).

Besides, k=1 to 96 indicates the hyper-parameter of Low-shot SVM.

95

https://arxiv.org/abs/1807.05520

MMSelfSup, Release 1.0.0rc6

ImageNet Linear Evaluation

The Feature1 - Feature5 don’t have the GlobalAveragePooling, the feature map is pooled to the specific dimensions
and then follows a Linear layer to do the classification. Please refer to resnet50_mhead_linear-8xb32-steplr-90e_in1k
for details of config.

The AvgPool result is obtained from Linear Evaluation with GlobalAveragePooling. Please refer to resnet50_linear-
8xb32-steplr-100e_in1k for details of config.

Places205 Linear Evaluation

The Feature1 - Feature5 don’t have the GlobalAveragePooling, the feature map is pooled to the specific dimensions
and then follows a Linear layer to do the classification. Please refer to resnet50_mhead_8xb32-steplr-28e_places205.py
for details of config.

15.3 Citation

@inproceedings{caron2018deep,
title={Deep clustering for unsupervised learning of visual features},
author={Caron, Mathilde and Bojanowski, Piotr and Joulin, Armand and Douze, Matthijs},
booktitle={ECCV},
year={2018}

}

96 Chapter 15. DeepCluster

https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/classification/imagenet/resnet50_mhead_linear-8xb32-steplr-90e_in1k.py
https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/classification/imagenet/resnet50_linear-8xb32-steplr-100e_in1k.py
https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/classification/imagenet/resnet50_linear-8xb32-steplr-100e_in1k.py
https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/classification/places205/resnet50_mhead_8xb32-steplr-28e_places205.py

CHAPTER

SIXTEEN

DENSECL

Dense Contrastive Learning for Self-Supervised Visual Pre-Training

16.1 Abstract

To date, most existing self-supervised learning methods are designed and optimized for image classification. These pre-
trained models can be sub-optimal for dense prediction tasks due to the discrepancy between image-level prediction
and pixel-level prediction. To fill this gap, we aim to design an effective, dense self-supervised learning method that
directly works at the level of pixels (or local features) by taking into account the correspondence between local features.
We present dense contrastive learning (DenseCL), which implements self-supervised learning by optimizing a pairwise
contrastive (dis)similarity loss at the pixel level between two views of input images.

16.2 Models and Benchmarks

In this page, we provide benchmarks as much as possible to evaluate our pre-trained models. If not mentioned, all
models are pre-trained on ImageNet-1k dataset.

16.2.1 Classification

The classification benchmarks includes 4 downstream task datasets, VOC, ImageNet, iNaturalist2018 and Places205.
If not specified, the results are Top-1 (%).

VOC SVM / Low-shot SVM

The Best Layer indicates that the best results are obtained from which layers feature map. For example, if the Best
Layer is feature3, its best result is obtained from the second stage of ResNet (1 for stem layer, 2-5 for 4 stage layers).

Besides, k=1 to 96 indicates the hyper-parameter of Low-shot SVM.

97

https://arxiv.org/abs/2011.09157

MMSelfSup, Release 1.0.0rc6

ImageNet Linear Evaluation

The Feature1 - Feature5 don’t have the GlobalAveragePooling, the feature map is pooled to the specific dimensions
and then follows a Linear layer to do the classification. Please refer to resnet50_mhead_linear-8xb32-steplr-90e_in1k
for details of config.

Places205 Linear Evaluation

The Feature1 - Feature5 don’t have the GlobalAveragePooling, the feature map is pooled to the specific dimensions
and then follows a Linear layer to do the classification. Please refer to resnet50_mhead_8xb32-steplr-28e_places205.py
for details of config.

ImageNet Nearest-Neighbor Classification

The results are obtained from the features after GlobalAveragePooling. Here, k=10 to 200 indicates different number
of nearest neighbors.

16.2.2 Detection

The detection benchmarks includes 2 downstream task datasets, Pascal VOC 2007 + 2012 and COCO2017. This
benchmark follows the evluation protocols set up by MoCo.

Pascal VOC 2007 + 2012

Please refer to config for details.

COCO2017

Please refer to config for details.

16.2.3 Segmentation

The segmentation benchmarks includes 2 downstream task datasets, Cityscapes and Pascal VOC 2012 + Aug. It
follows the evluation protocols set up by MMSegmentation.

Pascal VOC 2012 + Aug

Please refer to config for details.

98 Chapter 16. DenseCL

https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/classification/imagenet/resnet50_mhead_linear-8xb32-steplr-90e_in1k.py
https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/classification/places205/resnet50_mhead_8xb32-steplr-28e_places205.py
https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/mmdetection/voc0712/faster-rcnn_r50-c4_ms-24k_voc0712.py
https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/mmdetection/coco/mask-rcnn_r50_fpn_ms-1x_coco.py
https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/mmsegmentation/voc12aug/fcn_r50-d8_4xb4-20k_voc12aug-512x512.py

MMSelfSup, Release 1.0.0rc6

16.3 Citation

@inproceedings{wang2021dense,
title={Dense contrastive learning for self-supervised visual pre-training},
author={Wang, Xinlong and Zhang, Rufeng and Shen, Chunhua and Kong, Tao and Li, Lei},
booktitle={CVPR},
year={2021}

}

16.3. Citation 99

MMSelfSup, Release 1.0.0rc6

100 Chapter 16. DenseCL

CHAPTER

SEVENTEEN

EVA

EVA: Exploring the Limits of Masked Visual Representation Learning at Scale

17.1 Abstract

We launch EVA, a vision-centric foundation model to explore the limits of visual representation at scale using only
publicly accessible data. EVA is a vanilla ViT pre-trained to reconstruct the masked out image-text aligned vision
features conditioned on visible image patches. Via this pretext task, we can efficiently scale up EVA to one billion pa-
rameters, and sets new records on a broad range of representative vision downstream tasks, such as image recognition,
video action recognition, object detection, instance segmentation and semantic segmentation without heavy supervised
training. Moreover, we observe quantitative changes in scaling EVA result in qualitative changes in transfer learning
performance that are not present in other models. For instance, EVA takes a great leap in the challenging large vocabu-
lary instance segmentation task: our model achieves almost the same state-of-the-art performance on LVISv1.0 dataset
with over a thousand categories and COCO dataset with only eighty categories. Beyond a pure vision encoder, EVA
can also serve as a vision-centric, multi-modal pivot to connect images and text. We find initializing the vision tower
of a giant CLIP from EVA can greatly stabilize the training and outperform the training from scratch counterpart with
much fewer samples and less compute, providing a new direction for scaling up and accelerating the costly training of
multi-modal foundation models. To facilitate future research, we release all the code and models at this https URL.

17.2 Models and Benchmarks

Here, we report the results of the model, which is pre-trained on ImageNet-1k for 400 epochs, the details are below:

17.3 Citation

@article{fang2022eva,
title={Eva: Exploring the limits of masked visual representation learning at scale},
author={Fang, Yuxin and Wang, Wen and Xie, Binhui and Sun, Quan and Wu, Ledell and␣

→˓Wang, Xinggang and Huang, Tiejun and Wang, Xinlong and Cao, Yue},
journal={arXiv preprint arXiv:2211.07636},
year={2022}

}

101

https://arxiv.org/abs/2211.07636

MMSelfSup, Release 1.0.0rc6

102 Chapter 17. EVA

CHAPTER

EIGHTEEN

MAE

Masked Autoencoders Are Scalable Vision Learners

18.1 Abstract

This paper shows that masked autoencoders (MAE) are scalable self-supervised learners for computer vision. Our
MAE approach is simple: we mask random patches of the input image and reconstruct the missing pixels. It is based
on two core designs. First, we develop an asymmetric encoder-decoder architecture, with an encoder that operates only
on the visible subset of patches (without mask tokens), along with a lightweight decoder that reconstructs the original
image from the latent representation and mask tokens. Second, we find that masking a high proportion of the input
image, e.g., 75%, yields a nontrivial and meaningful self-supervisory task. Coupling these two designs enables us to
train large models efficiently and effectively: we accelerate training (by 3× or more) and improve accuracy. Our scalable
approach allows for learning high-capacity models that generalize well: e.g., a vanilla ViT-Huge model achieves the
best accuracy (87.8%) among methods that use only ImageNet-1K data. Transfer performance in downstream tasks
outperforms supervised pretraining and shows promising scaling behavior.

18.2 Models and Benchmarks

18.3 Evaluating MAE on Detection and Segmentation

If you want to evaluate your model on detection or segmentation task, we provide a script to convert the model keys
from MMClassification style to timm style.

cd $MMSELFSUP
python tools/model_converters/mmcls2timm.py $src_ckpt $dst_ckpt

Then, using this converted ckpt, you can evaluate your model on detection task, following Detectron2 and on semantic
segmentation task, following this project. Besides, using the unconverted ckpt, you can use MMSegmentation to
evaluate your model.

103

https://arxiv.org/abs/2111.06377
https://github.com/open-mmlab/mmselfsup/blob/main/tools/model_converters/mmcls2timm.py
https://github.com/facebookresearch/detectron2/tree/main/projects/ViTDet
https://github.com/implus/mae_segmentation
https://github.com/open-mmlab/mmsegmentation/tree/master/configs/mae

MMSelfSup, Release 1.0.0rc6

18.4 Citation

@article{He2021MaskedAA,
title={Masked Autoencoders Are Scalable Vision Learners},
author={Kaiming He and Xinlei Chen and Saining Xie and Yanghao Li and
Piotr Doll'ar and Ross B. Girshick},
journal={arXiv},
year={2021}

}

104 Chapter 18. MAE

CHAPTER

NINETEEN

MASKFEAT

Masked Feature Prediction for Self-Supervised Visual Pre-Training

19.1 Abstract

We present Masked Feature Prediction (MaskFeat) for self-supervised pre-training of video models. Our approach first
randomly masks out a portion of the input sequence and then predicts the feature of the masked regions. We study five
different types of features and find Histograms of Oriented Gradients (HOG), a hand-crafted feature descriptor, works
particularly well in terms of both performance and efficiency. We observe that the local contrast normalization in HOG
is essential for good results, which is in line with earlier work using HOG for visual recognition. Our approach can
learn abundant visual knowledge and drive large-scale Transformer-based models. Without using extra model weights
or supervision, MaskFeat pre-trained on unlabeled videos achieves unprecedented results of 86.7% with MViT-L on
Kinetics-400, 88.3% on Kinetics-600, 80.4% on Kinetics-700, 38.8 mAP on AVA, and 75.0% on SSv2. MaskFeat
further generalizes to image input, which can be interpreted as a video with a single frame and obtains competitive
results on ImageNet.

19.2 Models and Benchmarks

Here, we report the results of the model on ImageNet, the details are below:

19.3 Citation

@InProceedings{wei2022masked,
author = {Wei, Chen and Fan, Haoqi and Xie, Saining and Wu, Chao-Yuan and Yuille,␣

→˓Alan and Feichtenhofer, Christoph},
title = {Masked Feature Prediction for Self-Supervised Visual Pre-Training},
booktitle = {CVPR},
year = {2022},

}

105

https://arxiv.org/abs/2112.09133v1

MMSelfSup, Release 1.0.0rc6

106 Chapter 19. MaskFeat

CHAPTER

TWENTY

MILAN

MILAN: Masked Image Pretraining on Language Assisted Representation

20.1 Abstract

Self-attention based transformer models have been dominating many computer vision tasks in the past few years. Their
superb model qualities heavily depend on the excessively large labeled image datasets. In order to reduce the reliance
on large labeled datasets, reconstruction based masked autoencoders are gaining popularity, which learn high quality
transferable representations from unlabeled images. For the same purpose, recent weakly supervised image pretraining
methods explore language supervision from text captions accompanying the images. In this work, we propose masked
image pretraining on language assisted representation, dubbed as MILAN. Instead of predicting raw pixels or low level
features, our pretraining objective is to reconstruct the image features with substantial semantic signals that are obtained
using caption supervision. Moreover, to accommodate our reconstruction target, we propose a more efficient prompting
decoder architecture and a semantic aware mask sampling mechanism, which further advance the transfer performance
of the pretrained model. Experimental results demonstrate that MILAN delivers higher accuracy than the previous
works. When the masked autoencoder is pretrained and finetuned on ImageNet-1K dataset with an input resolution of
224×224, MILAN achieves a top-1 accuracy of 85.4% on ViTB/16, surpassing previous state-of-the-arts by 1%. In the
downstream semantic segmentation task, MILAN achieves 52.7 mIoU using ViT-B/16 backbone on ADE20K dataset,
outperforming previous masked pretraining results by 4 points.

20.2 Models and Benchmarks

Here, we report the results of the model, which is pre-trained on ImageNet-1k for 400 epochs, the details are below:

20.3 Citation

@article{Hou2022MILANMI,
title={MILAN: Masked Image Pretraining on Language Assisted Representation},
author={Zejiang Hou and Fei Sun and Yen-Kuang Chen and Yuan Xie and S. Y. Kung},
journal={ArXiv},
year={2022}

}

107

https://arxiv.org/pdf/2208.06049

MMSelfSup, Release 1.0.0rc6

108 Chapter 20. MILAN

CHAPTER

TWENTYONE

MIXMIM

MixMIM: Mixed and Masked Image Modeling for Efficient Visual Representation Learning

21.1 Abstract

In this study, we propose Mixed and Masked Image Modeling (MixMIM), a simple but efficient MIM method that is
applicable to various hierarchical Vision Transformers. Existing MIM methods replace a random subset of input tokens
with a special [MASK] symbol and aim at reconstructing original image tokens from the corrupted image. However,
we find that using the [MASK] symbol greatly slows down the training and causes training-finetuning inconsistency,
due to the large masking ratio (e.g., 40% in BEiT). In contrast, we replace the masked tokens of one image with visible
tokens of another image, i.e., creating a mixed image. We then conduct dual reconstruction to reconstruct the original
two images from the mixed input, which significantly improves efficiency. While MixMIM can be applied to various
architectures, this paper explores a simpler but stronger hierarchical Transformer, and scales with MixMIM-B, -L,
and -H. Empirical results demonstrate that MixMIM can learn high-quality visual representations efficiently. Notably,
MixMIM-B with 88M parameters achieves 85.1% top-1 accuracy on ImageNet-1K by pretraining for 600 epochs,
setting a new record for neural networks with comparable model sizes (e.g., ViT-B) among MIM methods. Besides, its
transferring performances on the other 6 datasets show MixMIM has better FLOPs / performance tradeoff than previous
MIM methods

21.2 Models and Benchmarks

Here, we report the results of the model on ImageNet, the details are below:

21.3 Citation

@article{MixMIM2022,
author = {Jihao Liu, Xin Huang, Yu Liu, Hongsheng Li},
journal = {arXiv:2205.13137},
title = {MixMIM: Mixed and Masked Image Modeling for Efficient Visual Representation␣

→˓Learning},
year = {2022},

}

109

https://arxiv.org/abs/2205.13137

MMSelfSup, Release 1.0.0rc6

110 Chapter 21. MixMIM

CHAPTER

TWENTYTWO

MOCO V1

Momentum Contrast for Unsupervised Visual Representation Learning

22.1 Abstract

We present Momentum Contrast (MoCo) for unsupervised visual representation learning. From a perspective on con-
trastive learning as dictionary look-up, we build a dynamic dictionary with a queue and a moving-averaged encoder.
This enables building a large and consistent dictionary on-the-fly that facilitates contrastive unsupervised learning.
MoCo provides competitive results under the common linear protocol on ImageNet classification. More importantly,
the representations learned by MoCo transfer well to downstream tasks.

22.2 Citation

@inproceedings{he2020momentum,
title={Momentum contrast for unsupervised visual representation learning},
author={He, Kaiming and Fan, Haoqi and Wu, Yuxin and Xie, Saining and Girshick, Ross},
booktitle={CVPR},
year={2020}

}

111

https://arxiv.org/abs/1911.05722

MMSelfSup, Release 1.0.0rc6

112 Chapter 22. MoCo v1

CHAPTER

TWENTYTHREE

MOCO V2

Improved Baselines with Momentum Contrastive Learning

23.1 Abstract

Contrastive unsupervised learning has recently shown encouraging progress, e.g., in Momentum Contrast (MoCo) and
SimCLR. In this note, we verify the effectiveness of two of SimCLR’s design improvements by implementing them in
the MoCo framework. With simple modifications to MoCo—namely, using an MLP projection head and more data
augmentation—we establish stronger baselines that outperform SimCLR and do not require large training batches. We
hope this will make state-of-the-art unsupervised learning research more accessible.

23.2 Models and Benchmarks

In this page, we provide benchmarks as much as possible to evaluate our pre-trained models. If not mentioned, all
models are pre-trained on ImageNet-1k dataset.

23.2.1 Classification

The classification benchmarks includes 4 downstream task datasets, VOC, ImageNet, iNaturalist2018 and Places205.
If not specified, the results are Top-1 (%).

VOC SVM / Low-shot SVM

The Best Layer indicates that the best results are obtained from which layers feature map. For example, if the Best
Layer is feature3, its best result is obtained from the second stage of ResNet (1 for stem layer, 2-5 for 4 stage layers).

Besides, k=1 to 96 indicates the hyper-parameter of Low-shot SVM.

113

https://arxiv.org/abs/2003.04297

MMSelfSup, Release 1.0.0rc6

ImageNet Linear Evaluation

The Feature1 - Feature5 don’t have the GlobalAveragePooling, the feature map is pooled to the specific dimensions
and then follows a Linear layer to do the classification. Please refer to resnet50_mhead_linear-8xb32-steplr-90e_in1k
for details of config.

Places205 Linear Evaluation

The Feature1 - Feature5 don’t have the GlobalAveragePooling, the feature map is pooled to the specific dimensions
and then follows a Linear layer to do the classification. Please refer to resnet50_mhead_8xb32-steplr-28e_places205.py
for details of config.

ImageNet Nearest-Neighbor Classification

The results are obtained from the features after GlobalAveragePooling. Here, k=10 to 200 indicates different number
of nearest neighbors.

23.2.2 Detection

The detection benchmarks includes 2 downstream task datasets, Pascal VOC 2007 + 2012 and COCO2017. This
benchmark follows the evluation protocols set up by MoCo.

Pascal VOC 2007 + 2012

Please refer to config for details.

COCO2017

Please refer to config for details.

23.2.3 Segmentation

The segmentation benchmarks includes 2 downstream task datasets, Cityscapes and Pascal VOC 2012 + Aug. It
follows the evluation protocols set up by MMSegmentation.

Pascal VOC 2012 + Aug

Please refer to config for details.

114 Chapter 23. MoCo v2

https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/classification/imagenet/resnet50_mhead_linear-8xb32-steplr-90e_in1k.py
https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/classification/places205/resnet50_mhead_8xb32-steplr-28e_places205.py
https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/mmdetection/voc0712/faster-rcnn_r50-c4_ms-24k_voc0712.py
https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/mmdetection/coco/mask-rcnn_r50_fpn_ms-1x_coco.py
https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/mmsegmentation/voc12aug/fcn_r50-d8_4xb4-20k_voc12aug-512x512.py

MMSelfSup, Release 1.0.0rc6

23.3 Citation

@article{chen2020improved,
title={Improved baselines with momentum contrastive learning},
author={Chen, Xinlei and Fan, Haoqi and Girshick, Ross and He, Kaiming},
journal={arXiv preprint arXiv:2003.04297},
year={2020}

}

23.3. Citation 115

MMSelfSup, Release 1.0.0rc6

116 Chapter 23. MoCo v2

CHAPTER

TWENTYFOUR

MOCO V3

An Empirical Study of Training Self-Supervised Vision Transformers

24.1 Abstract

This paper does not describe a novel method. Instead, it studies a straightforward, incremental, yet must-know baseline
given the recent progress in computer vision: self-supervised learning for Vision Transformers (ViT). While the training
recipes for standard convolutional networks have been highly mature and robust, the recipes for ViT are yet to be built,
especially in the self-supervised scenarios where training becomes more challenging. In this work, we go back to
basics and investigate the effects of several fundamental components for training self-supervised ViT. We observe that
instability is a major issue that degrades accuracy, and it can be hidden by apparently good results. We reveal that these
results are indeed partial failure, and they can be improved when training is made more stable. We benchmark ViT
results in MoCo v3 and several other self-supervised frameworks, with ablations in various aspects. We discuss the
currently positive evidence as well as challenges and open questions. We hope that this work will provide useful data
points and experience for future research.

24.2 Models and Benchmarks

In this page, we provide benchmarks as much as possible to evaluate our pre-trained models. If not mentioned, all
models are pre-trained on ImageNet-1k dataset.

24.3 Citation

@InProceedings{Chen_2021_ICCV,
title = {An Empirical Study of Training Self-Supervised Vision Transformers},
author = {Chen, Xinlei and Xie, Saining and He, Kaiming},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision␣

→˓(ICCV)},
year = {2021}

}

117

https://arxiv.org/abs/2104.02057

MMSelfSup, Release 1.0.0rc6

118 Chapter 24. MoCo v3

CHAPTER

TWENTYFIVE

NPID

Unsupervised Feature Learning via Non-Parametric Instance Discrimination

25.1 Abstract

Neural net classifiers trained on data with annotated class labels can also capture apparent visual similarity among
categories without being directed to do so. We study whether this observation can be extended beyond the conventional
domain of supervised learning: Can we learn a good feature representation that captures apparent similar- ity among
instances, instead of classes, by merely asking the feature to be discriminative of individual instances?

We formulate this intuition as a non-parametric classification problem at the instance-level, and use noise-contrastive
estimation to tackle the computational challenges imposed by the large number of instance classes. Our experimental
results demonstrate that, under unsupervised learning settings, our method surpasses the state-of-the-art on ImageNet
classification by a large margin.

Our method is also remarkable for consistently improving test performance with more training data and better network
architectures. By fine-tuning the learned feature, we further obtain competitive results for semi-supervised learning
and object detection tasks. Our non-parametric model is highly compact: With 128 features per image, our method
requires only 600MB storage for a million images, enabling fast nearest neighbour retrieval at the run time.

25.2 Results and Models

In this page, we provide benchmarks as much as possible to evaluate our pre-trained models. If not mentioned, all
models are pre-trained on ImageNet-1k dataset.

25.2.1 Classification

The classification benchmarks includes 4 downstream task datasets, VOC, ImageNet, iNaturalist2018 and Places205.
If not specified, the results are Top-1 (%).

119

https://arxiv.org/abs/1805.01978

MMSelfSup, Release 1.0.0rc6

VOC SVM / Low-shot SVM

The Best Layer indicates that the best results are obtained from which layers feature map. For example, if the Best
Layer is feature3, its best result is obtained from the second stage of ResNet (1 for stem layer, 2-5 for 4 stage layers).

Besides, k=1 to 96 indicates the hyper-parameter of Low-shot SVM.

ImageNet Linear Evaluation

The Feature1 - Feature5 don’t have the GlobalAveragePooling, the feature map is pooled to the specific dimensions
and then follows a Linear layer to do the classification. Please refer to resnet50_mhead_linear-8xb32-steplr-90e_in1k
for details of config.

Places205 Linear Evaluation

The Feature1 - Feature5 don’t have the GlobalAveragePooling, the feature map is pooled to the specific dimensions
and then follows a Linear layer to do the classification. Please refer to resnet50_mhead_8xb32-steplr-28e_places205.py
for details of config.

ImageNet Nearest-Neighbor Classification

The results are obtained from the features after GlobalAveragePooling. Here, k=10 to 200 indicates different number
of nearest neighbors.

25.2.2 Detection

The detection benchmarks includes 2 downstream task datasets, Pascal VOC 2007 + 2012 and COCO2017. This
benchmark follows the evluation protocols set up by MoCo.

Pascal VOC 2007 + 2012

Please refer to config for details.

COCO2017

Please refer to config for details.

25.2.3 Segmentation

The segmentation benchmarks includes 2 downstream task datasets, Cityscapes and Pascal VOC 2012 + Aug. It
follows the evluation protocols set up by MMSegmentation.

120 Chapter 25. NPID

https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/classification/imagenet/resnet50_mhead_linear-8xb32-steplr-90e_in1k.py
https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/classification/places205/resnet50_mhead_8xb32-steplr-28e_places205.py
https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/mmdetection/voc0712/faster-rcnn_r50-c4_ms-24k_voc0712.py
https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/mmdetection/coco/mask-rcnn_r50_fpn_ms-1x_coco.py

MMSelfSup, Release 1.0.0rc6

Pascal VOC 2012 + Aug

Please refer to config for details.

25.3 Citation

@inproceedings{wu2018unsupervised,
title={Unsupervised feature learning via non-parametric instance discrimination},
author={Wu, Zhirong and Xiong, Yuanjun and Yu, Stella X and Lin, Dahua},
booktitle={CVPR},
year={2018}

}

25.3. Citation 121

https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/mmsegmentation/voc12aug/fcn_r50-d8_4xb4-20k_voc12aug-512x512.py

MMSelfSup, Release 1.0.0rc6

122 Chapter 25. NPID

CHAPTER

TWENTYSIX

ODC

Online Deep Clustering for Unsupervised Representation Learning

26.1 Abstract

Joint clustering and feature learning methods have shown remarkable performance in unsupervised representation
learning. However, the training schedule alternating between feature clustering and network parameters update leads
to unstable learning of visual representations. To overcome this challenge, we propose Online Deep Clustering (ODC)
that performs clustering and network update simultaneously rather than alternatingly. Our key insight is that the cluster
centroids should evolve steadily in keeping the classifier stably updated. Specifically, we design and maintain two dy-
namic memory modules, i.e., samples memory to store samples’ labels and features, and centroids memory for centroids
evolution. We break down the abrupt global clustering into steady memory update and batch-wise label re-assignment.
The process is integrated into network update iterations. In this way, labels and the network evolve shoulder-to-shoulder
rather than alternatingly. Extensive experiments demonstrate that ODC stabilizes the training process and boosts the
performance effectively.

26.2 Models and Benchmarks

In this page, we provide benchmarks as much as possible to evaluate our pre-trained models. If not mentioned, all
models are pre-trained on ImageNet-1k dataset.

26.2.1 Classification

The classification benchmarks includes 4 downstream task datasets, VOC, ImageNet, iNaturalist2018 and Places205.
If not specified, the results are Top-1 (%).

VOC SVM / Low-shot SVM

The Best Layer indicates that the best results are obtained from which layers feature map. For example, if the Best
Layer is feature3, its best result is obtained from the second stage of ResNet (1 for stem layer, 2-5 for 4 stage layers).

Besides, k=1 to 96 indicates the hyper-parameter of Low-shot SVM.

123

https://arxiv.org/abs/2006.10645

MMSelfSup, Release 1.0.0rc6

ImageNet Linear Evaluation

The Feature1 - Feature5 don’t have the GlobalAveragePooling, the feature map is pooled to the specific dimensions
and then follows a Linear layer to do the classification. Please refer to resnet50_mhead_linear-8xb32-steplr-90e_in1k
for details of config.

The AvgPool result is obtained from Linear Evaluation with GlobalAveragePooling. Please refer to resnet50_linear-
8xb32-steplr-100e_in1k for details of config.

Places205 Linear Evaluation

The Feature1 - Feature5 don’t have the GlobalAveragePooling, the feature map is pooled to the specific dimensions
and then follows a Linear layer to do the classification. Please refer to resnet50_mhead_8xb32-steplr-28e_places205.py
for details of config.

ImageNet Nearest-Neighbor Classification

The results are obtained from the features after GlobalAveragePooling. Here, k=10 to 200 indicates different number
of nearest neighbors.

26.3 Citation

@inproceedings{zhan2020online,
title={Online deep clustering for unsupervised representation learning},
author={Zhan, Xiaohang and Xie, Jiahao and Liu, Ziwei and Ong, Yew-Soon and Loy, Chen␣

→˓Change},
booktitle={CVPR},
year={2020}

}

124 Chapter 26. ODC

https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/classification/imagenet/resnet50_mhead_linear-8xb32-steplr-90e_in1k.py
https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/classification/imagenet/resnet50_linear-8xb32-steplr-100e_in1k.py
https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/classification/imagenet/resnet50_linear-8xb32-steplr-100e_in1k.py
https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/classification/places205/resnet50_mhead_8xb32-steplr-28e_places205.py

CHAPTER

TWENTYSEVEN

RELATIVE LOCATION

Unsupervised Visual Representation Learning by Context Prediction

27.1 Abstract

This work explores the use of spatial context as a source of free and plentiful supervisory signal for training a rich
visual representation. Given only a large, unlabeled image collection, we extract random pairs of patches from each
image and train a convolutional neural net to predict the position of the second patch relative to the first. We argue
that doing well on this task requires the model to learn to recognize objects and their parts. We demonstrate that the
feature representation learned using this within-image context indeed captures visual similarity across images. For
example, this representation allows us to perform unsupervised visual discovery of objects like cats, people, and even
birds from the Pascal VOC 2011 detection dataset. Furthermore, we show that the learned ConvNet can be used in the
RCNN framework and provides a significant boost over a randomly-initialized ConvNet, resulting in state-of-the-art
performance among algorithms which use only Pascal-provided training set annotations.

27.2 Models and Benchmarks

In this page, we provide benchmarks as much as possible to evaluate our pre-trained models. If not mentioned, all
models are pre-trained on ImageNet-1k dataset.

27.2.1 Classification

The classification benchmarks includes 4 downstream task datasets, VOC, ImageNet, iNaturalist2018 and Places205.
If not specified, the results are Top-1 (%).

VOC SVM / Low-shot SVM

The Best Layer indicates that the best results are obtained from which layers feature map. For example, if the Best
Layer is feature3, its best result is obtained from the second stage of ResNet (1 for stem layer, 2-5 for 4 stage layers).

Besides, k=1 to 96 indicates the hyper-parameter of Low-shot SVM.

125

https://arxiv.org/abs/1505.05192

MMSelfSup, Release 1.0.0rc6

ImageNet Linear Evaluation

The Feature1 - Feature5 don’t have the GlobalAveragePooling, the feature map is pooled to the specific dimensions
and then follows a Linear layer to do the classification. Please refer to resnet50_mhead_linear-8xb32-steplr-90e_in1k
for details of config.

Places205 Linear Evaluation

The Feature1 - Feature5 don’t have the GlobalAveragePooling, the feature map is pooled to the specific dimensions
and then follows a Linear layer to do the classification. Please refer to resnet50_mhead_8xb32-steplr-28e_places205.py
for details of config.

ImageNet Nearest-Neighbor Classification

The results are obtained from the features after GlobalAveragePooling. Here, k=10 to 200 indicates different number
of nearest neighbors.

27.2.2 Detection

The detection benchmarks includes 2 downstream task datasets, Pascal VOC 2007 + 2012 and COCO2017. This
benchmark follows the evluation protocols set up by MoCo.

Pascal VOC 2007 + 2012

Please refer to config for details.

COCO2017

Please refer to config for details.

27.2.3 Segmentation

The segmentation benchmarks includes 2 downstream task datasets, Cityscapes and Pascal VOC 2012 + Aug. It
follows the evluation protocols set up by MMSegmentation.

Pascal VOC 2012 + Aug

Please refer to config for details.

126 Chapter 27. Relative Location

https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/classification/imagenet/resnet50_mhead_linear-8xb32-steplr-90e_in1k.py
https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/classification/places205/resnet50_mhead_8xb32-steplr-28e_places205.py
https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/mmdetection/voc0712/faster-rcnn_r50-c4_ms-24k_voc0712.py
https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/mmdetection/coco/mask-rcnn_r50_fpn_ms-1x_coco.py
https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/mmsegmentation/voc12aug/fcn_r50-d8_4xb4-20k_voc12aug-512x512.py

MMSelfSup, Release 1.0.0rc6

27.3 Citation

@inproceedings{doersch2015unsupervised,
title={Unsupervised visual representation learning by context prediction},
author={Doersch, Carl and Gupta, Abhinav and Efros, Alexei A},
booktitle={ICCV},
year={2015}

}

27.3. Citation 127

MMSelfSup, Release 1.0.0rc6

128 Chapter 27. Relative Location

CHAPTER

TWENTYEIGHT

ROTATION PREDICTION

Unsupervised Representation Learning by Predicting Image Rotation

28.1 Abstract

Over the last years, deep convolutional neural networks (ConvNets) have transformed the field of computer vision
thanks to their unparalleled capacity to learn high level semantic image features. However, in order to successfully
learn those features, they usually require massive amounts of manually labeled data, which is both expensive and im-
practical to scale. Therefore, unsupervised semantic feature learning, i.e., learning without requiring manual annotation
effort, is of crucial importance in order to successfully harvest the vast amount of visual data that are available today.
In our work we propose to learn image features by training ConvNets to recognize the 2d rotation that is applied to the
image that it gets as input. We demonstrate both qualitatively and quantitatively that this apparently simple task actu-
ally provides a very powerful supervisory signal for semantic feature learning. We exhaustively evaluate our method in
various unsupervised feature learning benchmarks and we exhibit in all of them state-of-the-art performance. Specif-
ically, our results on those benchmarks demonstrate dramatic improvements w.r.t. prior state-of-the-art approaches in
unsupervised representation learning and thus significantly close the gap with supervised feature learning.

28.2 Models and Benchmarks

In this page, we provide benchmarks as much as possible to evaluate our pre-trained models. If not mentioned, all
models are pre-trained on ImageNet-1k dataset.

28.2.1 Classification

The classification benchmarks includes 4 downstream task datasets, VOC, ImageNet, iNaturalist2018 and Places205.
If not specified, the results are Top-1 (%).

VOC SVM / Low-shot SVM

The Best Layer indicates that the best results are obtained from which layers feature map. For example, if the Best
Layer is feature3, its best result is obtained from the second stage of ResNet (1 for stem layer, 2-5 for 4 stage layers).

Besides, k=1 to 96 indicates the hyper-parameter of Low-shot SVM.

129

https://arxiv.org/abs/1803.07728

MMSelfSup, Release 1.0.0rc6

ImageNet Linear Evaluation

The Feature1 - Feature5 don’t have the GlobalAveragePooling, the feature map is pooled to the specific dimensions
and then follows a Linear layer to do the classification. Please refer to resnet50_mhead_linear-8xb32-steplr-90e_in1k
for details of config.

Places205 Linear Evaluation

The Feature1 - Feature5 don’t have the GlobalAveragePooling, the feature map is pooled to the specific dimensions
and then follows a Linear layer to do the classification. Please refer to resnet50_mhead_8xb32-steplr-28e_places205.py
for details of config.

ImageNet Nearest-Neighbor Classification

The results are obtained from the features after GlobalAveragePooling. Here, k=10 to 200 indicates different number
of nearest neighbors.

28.2.2 Detection

The detection benchmarks includes 2 downstream task datasets, Pascal VOC 2007 + 2012 and COCO2017. This
benchmark follows the evluation protocols set up by MoCo.

Pascal VOC 2007 + 2012

Please refer to config for details.

COCO2017

Please refer to config for details.

28.2.3 Segmentation

The segmentation benchmarks includes 2 downstream task datasets, Cityscapes and Pascal VOC 2012 + Aug. It
follows the evluation protocols set up by MMSegmentation.

Pascal VOC 2012 + Aug

Please refer to config for details.

130 Chapter 28. Rotation Prediction

https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/classification/imagenet/resnet50_mhead_linear-8xb32-steplr-90e_in1k.py
https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/classification/places205/resnet50_mhead_8xb32-steplr-28e_places205.py
https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/mmdetection/voc0712/faster-rcnn_r50-c4_ms-24k_voc0712.py
https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/mmdetection/coco/mask-rcnn_r50_fpn_ms-1x_coco.py
https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/mmsegmentation/voc12aug/fcn_r50-d8_4xb4-20k_voc12aug-512x512.py

MMSelfSup, Release 1.0.0rc6

28.3 Citation

@inproceedings{komodakis2018unsupervised,
title={Unsupervised representation learning by predicting image rotations},
author={Komodakis, Nikos and Gidaris, Spyros},
booktitle={ICLR},
year={2018}

}

28.3. Citation 131

MMSelfSup, Release 1.0.0rc6

132 Chapter 28. Rotation Prediction

CHAPTER

TWENTYNINE

SIMCLR

A Simple Framework for Contrastive Learning of Visual Representations

29.1 Abstract

This paper presents SimCLR: a simple framework for contrastive learning of visual representations. We simplify re-
cently proposed contrastive self-supervised learning algorithms without requiring specialized architectures or a mem-
ory bank. In order to understand what enables the contrastive prediction tasks to learn useful representations, we sys-
tematically study the major components of our framework. We show that (1) composition of data augmentations plays a
critical role in defining effective predictive tasks, (2) introducing a learnable nonlinear transformation between the rep-
resentation and the contrastive loss substantially improves the quality of the learned representations, and (3) contrastive
learning benefits from larger batch sizes and more training steps compared to supervised learning. By combining these
findings, we are able to considerably outperform previous methods for self-supervised and semi-supervised learning
on ImageNet. A linear classifier trained on self-supervised representations learned by SimCLR achieves 76.5% top-1
accuracy, which is a 7% relative improvement over previous state-of-the-art, matching the performance of a supervised
ResNet-50.

29.2 Results and Models

In this page, we provide benchmarks as much as possible to evaluate our pre-trained models. If not mentioned, all
models are pre-trained on ImageNet-1k dataset.

29.2.1 Classification

The classification benchmarks includes 4 downstream task datasets, VOC, ImageNet, iNaturalist2018 and Places205.
If not specified, the results are Top-1 (%).

VOC SVM / Low-shot SVM

The Best Layer indicates that the best results are obtained from which layers feature map. For example, if the Best
Layer is feature3, its best result is obtained from the second stage of ResNet (1 for stem layer, 2-5 for 4 stage layers).

Besides, k=1 to 96 indicates the hyper-parameter of Low-shot SVM.

133

https://arxiv.org/abs/2002.05709

MMSelfSup, Release 1.0.0rc6

ImageNet Linear Evaluation

The Feature1 - Feature5 don’t have the GlobalAveragePooling, the feature map is pooled to the specific dimensions
and then follows a Linear layer to do the classification. Please refer to resnet50_mhead_linear-8xb32-steplr-90e_in1k
for details of config.

Places205 Linear Evaluation

The Feature1 - Feature5 don’t have the GlobalAveragePooling, the feature map is pooled to the specific dimensions
and then follows a Linear layer to do the classification. Please refer to resnet50_mhead_8xb32-steplr-28e_places205.py
for details of config.

ImageNet Nearest-Neighbor Classification

The results are obtained from the features after GlobalAveragePooling. Here, k=10 to 200 indicates different number
of nearest neighbors.

29.2.2 Detection

The detection benchmarks includes 2 downstream task datasets, Pascal VOC 2007 + 2012 and COCO2017. This
benchmark follows the evluation protocols set up by MoCo.

Pascal VOC 2007 + 2012

Please refer to config for details.

COCO2017

Please refer to config for details.

29.2.3 Segmentation

The segmentation benchmarks includes 2 downstream task datasets, Cityscapes and Pascal VOC 2012 + Aug. It
follows the evluation protocols set up by MMSegmentation.

Pascal VOC 2012 + Aug

Please refer to config for details.

134 Chapter 29. SimCLR

https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/classification/imagenet/resnet50_mhead_linear-8xb32-steplr-90e_in1k.py
https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/classification/places205/resnet50_mhead_8xb32-steplr-28e_places205.py
https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/mmdetection/voc0712/faster-rcnn_r50-c4_ms-24k_voc0712.py
https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/mmdetection/coco/mask-rcnn_r50_fpn_ms-1x_coco.py
https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/mmsegmentation/voc12aug/fcn_r50-d8_4xb4-20k_voc12aug-512x512.py

MMSelfSup, Release 1.0.0rc6

29.3 Citation

@inproceedings{chen2020simple,
title={A simple framework for contrastive learning of visual representations},
author={Chen, Ting and Kornblith, Simon and Norouzi, Mohammad and Hinton, Geoffrey},
booktitle={ICML},
year={2020},

}

29.3. Citation 135

MMSelfSup, Release 1.0.0rc6

136 Chapter 29. SimCLR

CHAPTER

THIRTY

SIMMIM

SimMIM: A Simple Framework for Masked Image Modeling

30.1 Abstract

This paper presents SimMIM, a simple framework for masked image modeling. We simplify recently proposed related
approaches without special designs such as blockwise masking and tokenization via discrete VAE or clustering. To
study what let the masked image modeling task learn good representations, we systematically study the major com-
ponents in our framework, and find that simple designs of each component have revealed very strong representation
learning performance: 1) random masking of the input image with a moderately large masked patch size (e.g., 32)
makes a strong pre-text task; 2) predicting raw pixels of RGB values by direct regression performs no worse than the
patch classification approaches with complex designs; 3) the prediction head can be as light as a linear layer, with
no worse performance than heavier ones. Using ViT-B, our approach achieves 83.8% top-1 fine-tuning accuracy on
ImageNet-1K by pre-training also on this dataset, surpassing previous best approach by +0.6%. When applied on a
larger model of about 650 million parameters, SwinV2H, it achieves 87.1% top-1 accuracy on ImageNet-1K using only
ImageNet-1K data. We also leverage this approach to facilitate the training of a 3B model (SwinV2-G), that by 40×
less data than that in previous practice, we achieve the state-of-the-art on four representative vision benchmarks. The
code and models will be publicly available at https: //github.com/microsoft/SimMIM .

30.2 Models and Benchmarks

Here, we report the results of the model, and more results will be coming soon.

30.3 Citation

@inproceedings{xie2021simmim,
title={SimMIM: A Simple Framework for Masked Image Modeling},
author={Xie, Zhenda and Zhang, Zheng and Cao, Yue and Lin, Yutong and Bao, Jianmin and␣

→˓Yao, Zhuliang and Dai, Qi and Hu, Han},
booktitle={International Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2022}

}

137

https://arxiv.org/abs/2111.09886

MMSelfSup, Release 1.0.0rc6

138 Chapter 30. SimMIM

CHAPTER

THIRTYONE

SIMSIAM

Exploring Simple Siamese Representation Learning

31.1 Abstract

Siamese networks have become a common structure in various recent models for unsupervised visual representation
learning. These models maximize the similarity between two augmentations of one image, subject to certain conditions
for avoiding collapsing solutions. In this paper, we report surprising empirical results that simple Siamese networks
can learn meaningful representations even using none of the following: (i) negative sample pairs, (ii) large batches, (iii)
momentum encoders. Our experiments show that collapsing solutions do exist for the loss and structure, but a stop-
gradient operation plays an essential role in preventing collapsing. We provide a hypothesis on the implication of stop-
gradient, and further show proof-of-concept experiments verifying it. Our “SimSiam” method achieves competitive
results on ImageNet and downstream tasks. We hope this simple baseline will motivate people to rethink the roles of
Siamese architectures for unsupervised representation learning.

31.2 Models and Benchmarks

In this page, we provide benchmarks as much as possible to evaluate our pre-trained models. If not mentioned, all
models are pre-trained on ImageNet-1k dataset.

31.2.1 Classification

The classification benchmarks includes 4 downstream task datasets, VOC, ImageNet, iNaturalist2018 and Places205.
If not specified, the results are Top-1 (%).

VOC SVM / Low-shot SVM

The Best Layer indicates that the best results are obtained from which layers feature map. For example, if the Best
Layer is feature3, its best result is obtained from the second stage of ResNet (1 for stem layer, 2-5 for 4 stage layers).

Besides, k=1 to 96 indicates the hyper-parameter of Low-shot SVM.

139

https://arxiv.org/abs/2011.10566

MMSelfSup, Release 1.0.0rc6

ImageNet Linear Evaluation

The Feature1 - Feature5 don’t have the GlobalAveragePooling, the feature map is pooled to the specific dimensions
and then follows a Linear layer to do the classification. Please refer to resnet50_mhead_linear-8xb32-steplr-90e_in1k
for details of config.

Places205 Linear Evaluation

The Feature1 - Feature5 don’t have the GlobalAveragePooling, the feature map is pooled to the specific dimensions
and then follows a Linear layer to do the classification. Please refer to resnet50_mhead_8xb32-steplr-28e_places205.py
for details of config.

ImageNet Nearest-Neighbor Classification

The results are obtained from the features after GlobalAveragePooling. Here, k=10 to 200 indicates different number
of nearest neighbors.

31.2.2 Detection

The detection benchmarks includes 2 downstream task datasets, Pascal VOC 2007 + 2012 and COCO2017. This
benchmark follows the evluation protocols set up by MoCo.

Pascal VOC 2007 + 2012

Please refer to config for details.

COCO2017

Please refer to config for details.

31.2.3 Segmentation

The segmentation benchmarks includes 2 downstream task datasets, Cityscapes and Pascal VOC 2012 + Aug. It
follows the evluation protocols set up by MMSegmentation.

Pascal VOC 2012 + Aug

Please refer to config for details.

140 Chapter 31. SimSiam

https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/classification/imagenet/resnet50_mhead_linear-8xb32-steplr-90e_in1k.py
https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/classification/places205/resnet50_mhead_8xb32-steplr-28e_places205.py
https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/mmdetection/voc0712/faster-rcnn_r50-c4_ms-24k_voc0712.py
https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/mmdetection/coco/mask-rcnn_r50_fpn_ms-1x_coco.py
https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/mmsegmentation/voc12aug/fcn_r50-d8_4xb4-20k_voc12aug-512x512.py

MMSelfSup, Release 1.0.0rc6

31.3 Citation

@inproceedings{chen2021exploring,
title={Exploring simple siamese representation learning},
author={Chen, Xinlei and He, Kaiming},
booktitle={CVPR},
year={2021}

}

31.3. Citation 141

MMSelfSup, Release 1.0.0rc6

142 Chapter 31. SimSiam

CHAPTER

THIRTYTWO

SWAV

Unsupervised Learning of Visual Features by Contrasting Cluster Assignments

32.1 Abstract

Unsupervised image representations have significantly reduced the gap with supervised pretraining, notably with the
recent achievements of contrastive learning methods. These contrastive methods typically work online and rely on a
large number of explicit pairwise feature comparisons, which is computationally challenging. In this paper, we pro-
pose an online algorithm, SwAV, that takes advantage of contrastive methods without requiring to compute pairwise
comparisons. Specifically, our method simultaneously clusters the data while enforcing consistency between cluster
assignments produced for different augmentations (or “views”) of the same image, instead of comparing features di-
rectly as in contrastive learning. Simply put, we use a “swapped” prediction mechanism where we predict the code of
a view from the representation of another view. Our method can be trained with large and small batches and can scale
to unlimited amounts of data. Compared to previous contrastive methods, our method is more memory efficient since
it does not require a large memory bank or a special momentum network. In addition, we also propose a new data
augmentation strategy, multi-crop, that uses a mix of views with different resolutions in place of two full-resolution
views, without increasing the memory or compute requirements.

32.2 Models and Benchmarks

In this page, we provide benchmarks as much as possible to evaluate our pre-trained models. If not mentioned, all
models are pre-trained on ImageNet-1k dataset.

32.2.1 Classification

The classification benchmarks includes 4 downstream task datasets, VOC, ImageNet, iNaturalist2018 and Places205.
If not specified, the results are Top-1 (%).

143

https://arxiv.org/abs/2006.09882

MMSelfSup, Release 1.0.0rc6

VOC SVM / Low-shot SVM

The Best Layer indicates that the best results are obtained from which layers feature map. For example, if the Best
Layer is feature3, its best result is obtained from the second stage of ResNet (1 for stem layer, 2-5 for 4 stage layers).

Besides, k=1 to 96 indicates the hyper-parameter of Low-shot SVM.

ImageNet Linear Evaluation

The Feature1 - Feature5 don’t have the GlobalAveragePooling, the feature map is pooled to the specific dimensions
and then follows a Linear layer to do the classification. Please refer to resnet50_mhead_linear-8xb32-steplr-90e_in1k
for details of config.

Places205 Linear Evaluation

The Feature1 - Feature5 don’t have the GlobalAveragePooling, the feature map is pooled to the specific dimensions
and then follows a Linear layer to do the classification. Please refer to resnet50_mhead_8xb32-steplr-28e_places205.py
for details of config.

ImageNet Nearest-Neighbor Classification

The results are obtained from the features after GlobalAveragePooling. Here, k=10 to 200 indicates different number
of nearest neighbors.

32.2.2 Detection

The detection benchmarks includes 2 downstream task datasets, Pascal VOC 2007 + 2012 and COCO2017. This
benchmark follows the evluation protocols set up by MoCo.

Pascal VOC 2007 + 2012

Please refer to config for details.

COCO2017

Please refer to config for details.

32.2.3 Segmentation

The segmentation benchmarks includes 2 downstream task datasets, Cityscapes and Pascal VOC 2012 + Aug. It
follows the evluation protocols set up by MMSegmentation.

144 Chapter 32. SwAV

https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/classification/imagenet/resnet50_mhead_linear-8xb32-steplr-90e_in1k.py
https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/classification/places205/resnet50_mhead_8xb32-steplr-28e_places205.py
https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/mmdetection/voc0712/faster-rcnn_r50-c4_ms-24k_voc0712.py
https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/mmdetection/coco/mask-rcnn_r50_fpn_ms-1x_coco.py

MMSelfSup, Release 1.0.0rc6

Pascal VOC 2012 + Aug

Please refer to config for details.

32.3 Citation

@article{caron2020unsupervised,
title={Unsupervised Learning of Visual Features by Contrasting Cluster Assignments},
author={Caron, Mathilde and Misra, Ishan and Mairal, Julien and Goyal, Priya and␣

→˓Bojanowski, Piotr and Joulin, Armand},
booktitle={NeurIPS},
year={2020}

}

32.3. Citation 145

https://github.com/open-mmlab/mmselfsup/blob/main/configs/benchmarks/mmsegmentation/voc12aug/fcn_r50-d8_4xb4-20k_voc12aug-512x512.py

MMSelfSup, Release 1.0.0rc6

146 Chapter 32. SwAV

CHAPTER

THIRTYTHREE

MIGRATION

• Migration

– Migration from MMSelfSup 0.x

– Config

∗ Datasets

∗ Models

∗ Schedules

∗ Runtime settings

– Package

33.1 Migration from MMSelfSup 0.x

Warning: MMSelfSup 1.x depends on some new packages, you should create a new environment for MMSelfSup
1.x even if you have a well-rounded MMSelfSup 0.x environment before. Please refer to the install tutorial for
required packages installation.

We introduce some modifications of MMSelfSup 1.x, to help users to migrate their projects based on MMSelfSup 0.x
to 1.x smoothly.

Three important packages are listed below,

1. MMEngine: MMEngine is the base of all OpenMMLab 2.0 repos. Some modules, which are not specific to
Computer Vision, are migrated from MMCV to this repo.

2. MMCV: The computer vision package of OpenMMLab. This is not a new dependency, but you need to upgrade
it to above 2.0.0rc1 version.

3. MMClassification: The image classification package of OpenMMLab. This is not a new dependency, but you
need to upgrade it to above 1.0.0rc0 version.

147

https://github.com/open-mmlab/mmengine
https://github.com/open-mmlab/mmcv
https://github.com/open-mmlab/mmcv

MMSelfSup, Release 1.0.0rc6

33.2 Config

This section illustrates the changes of our config files in _base_ folder, which includes three parts

• Datasets: mmselfsup/configs/selfsup/_base_/datasets

• Models: mmselfsup/configs/selfsup/_base_/models

• Schedules: mmselfsup/configs/selfsup/_base_/schedules

33.2.1 Datasets

In MMSelfSup 0.x, we use key data to summarize all information, such as samples_per_gpu, train, val, etc.

In MMSelfSup 1.x, we separate train_dataloader, val_dataloader to summarize information correspodingly
and the key data has been removed.

data = dict(
samples_per_gpu=32, # total 32*8(gpu)=256
workers_per_gpu=4,
train=dict(

type=dataset_type,
data_source=dict(

type=data_source,
data_prefix='data/imagenet/train',
ann_file='data/imagenet/meta/train.txt',

),
num_views=[1, 1],
pipelines=[train_pipeline1, train_pipeline2],
prefetch=prefetch,

),
val=...)

train_dataloader = dict(
batch_size=32,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
collate_fn=dict(type='default_collate'),
dataset=dict(

type=dataset_type,
data_root=data_root,
ann_file='meta/train.txt',
data_prefix=dict(img_path='train/'),
pipeline=train_pipeline))

val_dataloader = ...

Besides, we remove the key of data_source to keep the pipeline format consistent with that in other OpenMMLab
projects. Please refer to Config for more details.

Changes in pipeline:

Take MAE as an example of pipeline:

148 Chapter 33. Migration

MMSelfSup, Release 1.0.0rc6

train_pipeline = [
dict(type='LoadImageFromFile'),
dict(

type='RandomResizedCrop',
size=224,
scale=(0.2, 1.0),
backend='pillow',
interpolation='bicubic'),

dict(type='RandomFlip', prob=0.5),
dict(type='PackSelfSupInputs', meta_keys=['img_path'])

]

33.2.2 Models

In the config of models, there are two main different parts from MMSeflSup 0.x.

1. There is a new key called data_preprocessor, which is responsible for preprocessing the data, like normal-
ization, channel conversion, etc. For example:

model = dict(
type='MAE',
data_preprocessor=dict(

mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True),

backbone=...,
neck=...,
head=...,
init_cfg=...)

NOTE: data_preprocessor can be defined outside the model dict, which has higher priority than it in model dict.

For example bwlow, Runner would build data_preprocessor based on mean=[123.675, 116.28, 103.53] and
std=[58.395, 57.12, 57.375], but omit the 127.5 of mean and std.

data_preprocessor=dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True)

model = dict(
type='MAE',
data_preprocessor=dict(

mean=[127.5, 127.5, 127.5],
std=[127.5, 127.5, 127.5],
bgr_to_rgb=True)

backbone=...,
neck=...,
head=...,
init_cfg=...)

Related codes in MMEngine: Runner could get key cfg.data_preprocessor in cfg directly and merge it to cfg.
model.

2. There is a new key loss in head in MMSelfSup 1.x, to determine the loss function of the algorithm. For example:

33.2. Config 149

https://github.com/open-mmlab/mmengine/blob/main/mmengine/runner/runner.py#L450
https://github.com/open-mmlab/mmengine/blob/main/mmengine/runner/runner.py#L401

MMSelfSup, Release 1.0.0rc6

model = dict(
type='MAE',
data_preprocessor=...,
backbone=...,
neck=...,
head=dict(

type='MAEPretrainHead',
norm_pix=True,
patch_size=16,
loss=dict(type='MAEReconstructionLoss')),

init_cfg=...)

33.2.3 Schedules

1. Changes in optimizer and optimizer_config:

• Now we use optim_wrapper field to specify all configuration about the optimization process. And the
optimizer is a sub field of optim_wrapper now.

• paramwise_cfg is also a sub field of optim_wrapper, instead of optimizer.

• optimizer_config is removed now, and all configurations of it are moved to optim_wrapper.

• grad_clip is renamed to clip_grad.

optimizer = dict(
type='AdamW',
lr=0.0015,
weight_decay=0.3,
paramwise_options = dict(

norm_decay_mult=0.0,
bias_decay_mult=0.0,

))
optimizer_config = dict(grad_clip=dict(max_norm=1.0))

optim_wrapper = dict(
optimizer=dict(type='AdamW', lr=0.0015, weight_decay=0.3),
paramwise_cfg = dict(

norm_decay_mult=0.0,
bias_decay_mult=0.0,

),
clip_gard=dict(max_norm=1.0),

)

2. Changes in lr_config:

• The lr_config field is removed and we use new param_scheduler to replace it.

• The warmup related arguments are removed, since we use a separate lr scheduler to implement this functionality.
These introduced lr schedulers are very flexible, and you can use them to design many kinds of learning rate /
momentum curves. See the tutorial for more details.

lr_config = dict(
policy='CosineAnnealing',

(continues on next page)

150 Chapter 33. Migration

https://mmengine.readthedocs.io/en/latest/tutorials/param_scheduler.html

MMSelfSup, Release 1.0.0rc6

(continued from previous page)

min_lr=0,
warmup='linear',
warmup_iters=5,
warmup_ratio=0.01,
warmup_by_epoch=True)

param_scheduler = [
warmup
dict(

type='LinearLR',
start_factor=0.01,
by_epoch=True,
end=5,
Update the learning rate after every iters.
convert_to_iter_based=True),

main learning rate scheduler
dict(type='CosineAnnealingLR', by_epoch=True, begin=5 end=200),

]

1. Changes in runner:

Most configuration in the original runner field is moved to train_cfg, val_cfg and test_cfg, which configure the
loop in training, validation and test.

runner = dict(type='EpochBasedRunner', max_epochs=200)

train_cfg = dict(by_epoch=True, max_epochs=200)

33.2.4 Runtime settings

1. Changes in checkpoint_config and log_config:

The checkpoint_config are moved to default_hooks.checkpoint and the log_config are moved to
default_hooks.logger.

And we move many hooks settings from the script code to the default_hooks field in the runtime configuration.

default_hooks = dict(
record the time of every iterations.
timer=dict(type='IterTimerHook'),
print log every 100 iterations.
logger=dict(type='LoggerHook', interval=100),
enable the parameter scheduler.
param_scheduler=dict(type='ParamSchedulerHook'),
save checkpoint per epoch, and automatically save the best checkpoint.
checkpoint=dict(type='CheckpointHook', interval=1, save_best='auto'),
set sampler seed in distributed evrionment.
sampler_seed=dict(type='DistSamplerSeedHook'),
validation results visualization, set True to enable it.
visualization=dict(type='VisualizationHook', enable=False),

)

33.2. Config 151

MMSelfSup, Release 1.0.0rc6

In addition, we splited the original logger to logger and visualizer. The logger is used to record information and the
visualizer is used to show the logger in different backends, like terminal, TensorBoard and Wandb.

log_config = dict(
interval=100,
hooks=[

dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHook'),

])

default_hooks = dict(
...
logger=dict(type='LoggerHook', interval=100),

)
visualizer = dict(

type='SelfSupVisualizer',
vis_backends=[dict(type='LocalVisBackend'), dict(type='TensorboardVisBackend')],

)

2. Changes in load_from and resume_from:

• The resume_from is removed. And we use resume and load_from to replace it.

– If resume=True and load_from is not None, resume training from the checkpoint in load_from.

– If resume=True and load_from is None, try to resume from the latest checkpoint in the work directory.

– If resume=False and load_from is not None, only load the checkpoint, not resume training.

– If resume=False and load_from is None, do not load nor resume.

3. Changes in dist_params:

The dist_params field is a sub field of env_cfg now. And there are some new configurations in the env_cfg.

env_cfg = dict(
whether to enable cudnn benchmark
cudnn_benchmark=False,
set multi process parameters
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
set distributed parameters
dist_cfg=dict(backend='nccl'),

)

4. Changes in workflow: workflow related functionalities are removed.

5. New field visualizer:

The visualizer is a new design in OpenMMLab 2.0 architecture. We use a visualizer instance in the runner to handle
results & log visualization and save to different backends. See the MMEngine visualization tutorial for more details.

visualizer = dict(
type='SelfSupVisualizer',
vis_backends=[

dict(type='LocalVisBackend'),
Uncomment the below line to save the log and visualization results to␣

→˓TensorBoard.
dict(type='TensorboardVisBackend')

(continues on next page)

152 Chapter 33. Migration

https://mmengine.readthedocs.io/en/latest/advanced_tutorials/visualization.html

MMSelfSup, Release 1.0.0rc6

(continued from previous page)

]
)

1. New field default_scope: The start point to search module for all registries. The default_scope in MM-
SelfSup is mmselfsup. See the registry tutorial for more details.

33.3 Package

The table below records the general modification of the folders and files.

33.3. Package 153

https://mmengine.readthedocs.io/en/latest/tutorials/registry.html

MMSelfSup, Release 1.0.0rc6

154 Chapter 33. Migration

CHAPTER

THIRTYFOUR

MMSELFSUP.DATASETS

34.1 datasets

class mmselfsup.datasets.DeepClusterImageNet(ann_file: str = '', metainfo: Optional[dict] = None,
data_root: str = '', data_prefix: Union[str, dict] = '',
**kwargs)

ImageNet Dataset.

The dataset inherit ImageNet dataset from MMClassification as the DeepCluster and Online Deep Clustering
algorithm need to initialize clustering labels and assign them during training.

Parameters
• ann_file (str) – Annotation file path. Defaults to None.

• metainfo (dict, optional) – Meta information for dataset, such as class information.
Defaults to None.

• data_root (str) – The root directory for data_prefix and ann_file. Defaults to None.

• data_prefix (str | dict) – Prefix for training data. Defaults to None.

• **kwargs – Other keyword arguments in CustomDataset and BaseDataset.

assign_labels(labels: list)→ None
Assign new labels to self.clustering_labels.

Parameters labels (list) – The new labels.

Returns None

prepare_data(idx: int)→ Any
Get data processed by self.pipeline.

Parameters idx (int) – The index of data_info.

Returns Depends on self.pipeline.

Return type Any

class mmselfsup.datasets.ImageList(ann_file: str, metainfo: Optional[dict] = None, data_root: str = '',
data_prefix: Union[str, dict] = '', **kwargs)

The dataset implementation for loading any image list file.

The ImageList can load an annotation file or a list of files and merge all data records to one list. If data is
unlabeled, the gt_label will be set -1.

An annotation file should be provided, and each line indicates a sample:

The sample files:

155

http://www.image-net.org

MMSelfSup, Release 1.0.0rc6

data_prefix/
folder_1

xxx.png
xxy.png
...

folder_2
123.png
nsdf3.png
...

1. If data is labeled, the annotation file (the first column is the image path and the second column is
the index of category):

folder_1/xxx.png 0
folder_1/xxy.png 1
folder_2/123.png 5
folder_2/nsdf3.png 3
...

2. If data is unlabeled, the annotation file is: ::

folder_1/xxx.png
folder_1/xxy.png
folder_2/123.png
folder_2/nsdf3.png
...

Parameters
• ann_file (str) – Annotation file path.

• metainfo (dict, optional) – Meta information for dataset, such as class information.
Defaults to None.

• data_root (str) – The root directory for data_prefix and ann_file. Defaults to None.

• data_prefix (str | dict) – Prefix for training data. Defaults to None.

• **kwargs – Other keyword arguments in CustomDataset and BaseDataset.

load_data_list()→ List[dict]
Rewrite load_data_list() function for supporting annotation files with unlabeled data.

Returns A list of data information.

Return type List[dict]

class mmselfsup.datasets.Places205(ann_file: str = '', metainfo: Optional[dict] = None, data_root: str = '',
data_prefix: Union[str, dict] = '', **kwargs)

Places205 Dataset.

The dataset supports two kinds of annotation format. More details can be found in CustomDataset.

Parameters
• ann_file (str) – Annotation file path. Defaults to None.

• metainfo (dict, optional) – Meta information for dataset, such as class information.
Defaults to None.

156 Chapter 34. mmselfsup.datasets

http://places.csail.mit.edu/downloadData.html

MMSelfSup, Release 1.0.0rc6

• data_root (str) – The root directory for data_prefix and ann_file. Defaults to None.

• data_prefix (str | dict) – Prefix for training data. Defaults to None.

• **kwargs – Other keyword arguments in CustomDataset and BaseDataset.

mmselfsup.datasets.build_dataset(cfg)
Build dataset.

34.2 transforms

class mmselfsup.datasets.transforms.BEiTMaskGenerator(input_size: int, num_masking_patches: int,
min_num_patches: int = 4,
max_num_patches: Optional[int] = None,
min_aspect: float = 0.3, max_aspect:
Optional[float] = None)

Generate mask for image.

Added Keys:

• mask

This module is borrowed from https://github.com/microsoft/unilm/tree/master/beit

Parameters
• input_size (int) – The size of input image.

• num_masking_patches (int) – The number of patches to be masked.

• min_num_patches (int) – The minimum number of patches to be masked in the process
of generating mask. Defaults to 4.

• max_num_patches (int, optional) – The maximum number of patches to be masked in
the process of generating mask. Defaults to None.

• min_aspect (float, optional) – The minimum aspect ratio of mask blocks. Defaults
to 0.3.

• min_aspect – The minimum aspect ratio of mask blocks. Defaults to None.

get_shape()→ Tuple[int, int]
Get the shape of mask.

Returns The shape of mask.

Return type Tuple[int, int]

transform(results: dict)→ dict
Method to generate random block mask for each Image in BEiT.

Parameters results (dict) – Result dict from previous pipeline.

Returns Result dict with added key mask.

Return type dict

class mmselfsup.datasets.transforms.ColorJitter(brightness: Union[float, List[float]] = 0, contrast:
Union[float, List[float]] = 0, saturation: Union[float,
List[float]] = 0, hue: Union[float, List[float]] = 0,
backend: str = 'pillow')

Randomly change the brightness, contrast, saturation and hue of an image.

34.2. transforms 157

https://github.com/microsoft/unilm/tree/master/beit

MMSelfSup, Release 1.0.0rc6

Modified from https://github.com/pytorch/vision/blob/main/torchvision/transforms/transforms.py

Required Keys:

• img

Modified Keys:

• img

Parameters
• brightness (float or tuple of float (min, max)) – How much to jitter bright-

ness. brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness] or
the given [min, max]. Should be non negative numbers.

• contrast (float or tuple of float (min, max)) – How much to jitter contrast.
contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast] or the given
[min, max]. Should be non negative numbers.

• saturation (float or tuple of float (min, max)) – How much to jitter satura-
tion. saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation] or
the given [min, max]. Should be non negative numbers.

• hue (float or tuple of float (min, max)) – How much to jitter hue. hue_factor is
chosen uniformly from [-hue, hue] or the given [min, max]. Should have 0 <= hue <= 0.5 or
-0.5 <= min <= max <= 0.5. To jitter hue, the pixel values of the input image has to be non-
negative for conversion to HSV space; thus it does not work if you normalize your image to
an interval with negative values, or use an interpolation that generates negative values before
using this function.

• backend (str) – The type of image processing backend. Options are cv2, pillow. Defaults
to pillow.

static get_params(brightness: Optional[List[float]], contrast: Optional[List[float]], saturation:
Optional[List[float]], hue: Optional[List[float]])→ Tuple[numpy.ndarray,
Optional[float], Optional[float], Optional[float], Optional[float]]

Get the parameters for the randomized transform to be applied on image.

Parameters
• brightness (tuple of float (min, max), optional) – The range from which the

brightness_factor is chosen uniformly. Pass None to turn off the transformation.

• contrast (tuple of float (min, max), optional) – The range from which the
contrast_factor is chosen uniformly. Pass None to turn off the transformation.

• saturation (tuple of float (min, max), optional) – The range from which the
saturation_factor is chosen uniformly. Pass None to turn off the transformation.

• hue (tuple of float (min, max), optional) – The range from which the
hue_factor is chosen uniformly. Pass None to turn off the transformation.

Returns
The parameters used to apply the randomized transform along with their random order.

Return type tuple

transform(results: dict)→ dict
Randomly change the brightness, contrast, saturation and hue of an image. # noqa: E501.

Parameters results (dict) – The results dict from previous pipeline.

158 Chapter 34. mmselfsup.datasets

https://github.com/pytorch/vision/blob/main/torchvision/transforms/transforms.py

MMSelfSup, Release 1.0.0rc6

Returns Results after applying this transformation.

Return type dict

class mmselfsup.datasets.transforms.MultiView(transforms: List[List[Union[dict, Callable[[dict],
dict]]]], num_views: Union[int, List[int]])

A transform wrapper for multiple views of an image.

Parameters
• transforms (list[dict | callable], optional) – Sequence of transform object or

config dict to be wrapped.

• mapping (dict) – A dict that defines the input key mapping. The keys corresponds to the
inner key (i.e., kwargs of the transform method), and should be string type. The values
corresponds to the outer keys (i.e., the keys of the data/results), and should have a type of
string, list or dict. None means not applying input mapping. Default: None.

• allow_nonexist_keys (bool) – If False, the outer keys in the mapping must exist in the
input data, or an exception will be raised. Default: False.

Examples

>>> # Example 1: MultiViews 1 pipeline with 2 views
>>> pipeline = [
>>> dict(type='MultiView',
>>> num_views=2,
>>> transforms=[
>>> [
>>> dict(type='Resize', scale=224))],
>>>])
>>>]
>>> # Example 2: MultiViews 2 pipelines, the first with 2 views,
>>> # the second with 6 views
>>> pipeline = [
>>> dict(type='MultiView',
>>> num_views=[2, 6],
>>> transforms=[
>>> [
>>> dict(type='Resize', scale=224)],
>>> [
>>> dict(type='Resize', scale=224),
>>> dict(type='RandomSolarize')],
>>>])
>>>]

transform(results: dict)→ dict
Apply transformation to inputs.

Parameters results (dict) – Result dict from previous pipelines.

Returns Transformed results.

Return type dict

34.2. transforms 159

MMSelfSup, Release 1.0.0rc6

class mmselfsup.datasets.transforms.PackSelfSupInputs(key: str = 'img', algorithm_keys: List[str] =
[], pseudo_label_keys: List[str] = [],
meta_keys: List[str] = [])

Pack data into the format compatible with the inputs of algorithm.

Required Keys:

• img

Added Keys:

• data_samples

• inputs

Parameters
• key (str) – The key of image inputted into the model. Defaults to ‘img’.

• algorithm_keys (List[str]) – Keys of elements related to algorithms, e.g. mask. De-
faults to [].

• pseudo_label_keys (List[str]) – Keys set to be the attributes of pseudo_label. Defaults
to [].

• meta_keys (List[str]) – The keys of meta info of an image. Defaults to [].

classmethod set_algorithm_keys(data_sample:
mmselfsup.structures.selfsup_data_sample.SelfSupDataSample, key:
str, results: dict)→ None

Set the algorithm keys of SelfSupDataSample.

Parameters
• data_sample (SelfSupDataSample) – An instance of SelfSupDataSample.

• key (str) – The key, which may be used by the algorithm, such as gt_label, sample_idx,
mask, pred_label. For more keys, please refer to the attribute of SelfSupDataSample.

• results (dict) – The results from the data pipeline.

transform(results: Dict)→ Dict[torch.Tensor,
mmselfsup.structures.selfsup_data_sample.SelfSupDataSample]

Method to pack the data.

Parameters results (Dict) – Result dict from the data pipeline.

Returns
• inputs (List[torch.Tensor]): The forward data of models.

• data_samples (SelfSupDataSample): The annotation info of the forward data.

Return type Dict

class mmselfsup.datasets.transforms.RandomCrop(size: Union[int, Sequence[int]], padding:
Optional[Union[int, Sequence[int]]] = None,
pad_if_needed: bool = False, pad_val:
Union[numbers.Number, Sequence[numbers.Number]]
= 0, padding_mode: str = 'constant')

Crop the given Image at a random location.

Required Keys:

• img

160 Chapter 34. mmselfsup.datasets

MMSelfSup, Release 1.0.0rc6

Modified Keys:

• img

• img_shape

Parameters
• size (int or Sequence) – Desired output size of the crop. If size is an int instead of

sequence like (h, w), a square crop (size, size) is made.

• padding (int or Sequence, optional) – Optional padding on each border of the im-
age. If a sequence of length 4 is provided, it is used to pad left, top, right, bottom borders
respectively. If a sequence of length 2 is provided, it is used to pad left/right, top/bottom
borders, respectively. Default: None, which means no padding.

• pad_if_needed (boolean) – It will pad the image if smaller than the desired size to avoid
raising an exception. Since cropping is done after padding, the padding seems to be done at
a random offset. Default: False.

• pad_val (Number | Sequence[Number]) – Pixel pad_val value for constant fill. If a tuple
of length 3, it is used to pad_val R, G, B channels respectively. Default: 0.

• padding_mode (str) – Type of padding. Defaults to “constant”. Should be one of the
following:

– constant: Pads with a constant value, this value is specified with pad_val.

– edge: pads with the last value at the edge of the image.

– reflect: Pads with reflection of image without repeating the last value on the edge. For
example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode will result in
[3, 2, 1, 2, 3, 4, 3, 2].

– symmetric: Pads with reflection of image repeating the last value on the edge. For exam-
ple, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode will result in
[2, 1, 1, 2, 3, 4, 4, 3].

static get_params(img: numpy.ndarray, output_size: Tuple)→ Tuple
Get parameters for crop for a random crop.

Parameters
• img (np.ndarray) – Image to be cropped.

• output_size (Tuple) – Expected output size of the crop.

Returns
Params (xmin, ymin, target_height, target_width) to be passed to crop for random crop.

Return type tuple

transform(results: dict)→ dict
Randomly crop the image.

Parameters results (dict) – Result dict from previous pipeline.

Returns Result dict with the transformed image.

Return type dict

class mmselfsup.datasets.transforms.RandomGaussianBlur(sigma_min: float, sigma_max: float, prob:
Optional[float] = 0.5)

GaussianBlur augmentation refers to SimCLR.

34.2. transforms 161

MMSelfSup, Release 1.0.0rc6

Paper link.

Required Keys:

• img

Modified Keys:

• img

Parameters
• sigma_min (float) – The minimum parameter of Gaussian kernel std.

• sigma_max (float) – The maximum parameter of Gaussian kernel std.

• prob (float, optional) – Probability. Defaults to 0.5.

transform(results: dict)→ dict
Apply GaussianBlur augmentation to the given image.

Parameters results (dict) – Results from previous pipeline.

Returns Results after applying this transformation.

Return type dict

class mmselfsup.datasets.transforms.RandomPatchWithLabels
Relative patch location.

Required Keys:

• img

Modified Keys:

• img

Added Keys:

• patch_label

• patch_box

• unpatched_img

Crops image into several patches and concatenates every surrounding patch with center one. Finally gives labels
0, 1, 2, 3, 4, 5, 6, 7 and patch positions.

transform(results: dict)→ dict
Apply random patch augmentation to the given image.

Parameters results (dict) – Results from previous pipeline.

Returns Results after applying this transformation.

Return type dict

class mmselfsup.datasets.transforms.RandomResizedCrop(size: Union[int, Sequence[int]], scale: Tuple
= (0.08, 1.0), ratio: Tuple = (0.75,
1.3333333333333333), max_attempts: int =
10, interpolation: str = 'bilinear', backend:
str = 'cv2')

Crop the given image to random size and aspect ratio.

A crop of random size (default: of 0.08 to 1.0) of the original size and a random aspect ratio (default: of 3/4 to
4/3) of the original aspect ratio is made. This crop is finally resized to given size.

162 Chapter 34. mmselfsup.datasets

https://arxiv.org/abs/2002.05709

MMSelfSup, Release 1.0.0rc6

Required Keys:

• img

Modified Keys:

• img

• img_shape

Parameters
• size (Sequence | int) – Desired output size of the crop. If size is an int instead of se-

quence like (h, w), a square crop (size, size) is made.

• scale (Tuple) – Range of the random size of the cropped image compared to the original
image. Defaults to (0.08, 1.0).

• ratio (Tuple) – Range of the random aspect ratio of the cropped image compared to the
original image. Defaults to (3. / 4., 4. / 3.).

• max_attempts (int) – Maximum number of attempts before falling back to Central Crop.
Defaults to 10.

• interpolation (str) – Interpolation method, accepted values are ‘nearest’, ‘bilinear’,
‘bicubic’, ‘area’, ‘lanczos’. Defaults to ‘bilinear’.

• backend (str) – The image resize backend type, accepted values are cv2 and pillow. De-
faults to cv2.

static get_params(img: numpy.ndarray, scale: Tuple, ratio: Tuple, max_attempts: int = 10)→ Tuple[int,
int, int, int]

Get parameters for crop for a random sized crop.

Parameters
• img (np.ndarray) – Image to be cropped.

• scale (Tuple) – Range of the random size of the cropped image compared to the original
image size.

• ratio (Tuple) – Range of the random aspect ratio of the cropped image compared to the
original image area.

• max_attempts (int) – Maximum number of attempts before falling back to central crop.
Defaults to 10.

Returns
Params (ymin, xmin, ymax, xmax) to be passed to crop for a random sized crop.

Return type tuple

transform(results: dict)→ dict
Randomly crop the image and resize the image to the target size.

Parameters results (dict) – Result dict from previous pipeline.

Returns Result dict with the transformed image.

Return type dict

34.2. transforms 163

MMSelfSup, Release 1.0.0rc6

class mmselfsup.datasets.transforms.RandomResizedCropAndInterpolationWithTwoPic(size:
Union[tuple,
int], sec-
ond_size=None,
scale=(0.08,
1.0),
ratio=(0.75,
1.3333333333333333),
interpola-
tion='bilinear',
sec-
ond_interpolation='lanczos')

Crop the given PIL Image to random size and aspect ratio with random interpolation.

Required Keys:

• img

Modified Keys:

• img

Added Keys:

• target_img

This module is borrowed from https://github.com/microsoft/unilm/tree/master/beit.

A crop of random size (default: of 0.08 to 1.0) of the original size and a random aspect ratio (default: of 3/4 to
4/3) of the original aspect ratio is made. This crop is finally resized to given size. This is popularly used to train
the Inception networks. This module first crops the image and resizes the crop to two different sizes.

Parameters
• size (Union[tuple, int]) – Expected output size of each edge of the first image.

• second_size (Union[tuple, int], optional) – Expected output size of each edge of
the second image.

• scale (tuple[float, float]) – Range of size of the origin size cropped. Defaults to
(0.08, 1.0).

• ratio (tuple[float, float]) – Range of aspect ratio of the origin aspect ratio cropped.
Defaults to (3./4., 4./3.).

• interpolation (str) – The interpolation for the first image. Defaults to bilinear.

• second_interpolation (str) – The interpolation for the second image. Defaults to
lanczos.

static get_params(img: numpy.ndarray, scale: tuple, ratio: tuple)→ Sequence[int]
Get parameters for crop for a random sized crop.

Parameters
• img (np.ndarray) – Image to be cropped.

• scale (tuple) – range of size of the origin size cropped

• ratio (tuple) – range of aspect ratio of the origin aspect ratio cropped

Returns
params (i, j, h, w) to be passed to crop for a random sized crop.

164 Chapter 34. mmselfsup.datasets

https://github.com/microsoft/unilm/tree/master/beit

MMSelfSup, Release 1.0.0rc6

Return type tuple

transform(results: dict)→ dict
Crop the given image and resize it to two different sizes.

This module crops the given image randomly and resize the crop to two different sizes. This is popularly
used in BEiT-style masked image modeling, where an off-the-shelf model is used to provide the target.

Parameters results (dict) – Results from previous pipeline.

Returns Results after applying this transformation.

Return type dict

class mmselfsup.datasets.transforms.RandomRotation(degrees: Union[int, Sequence[int]], interpolation:
str = 'nearest', expand: bool = False, center:
Optional[Tuple[float]] = None, fill: int = 0)

Rotate the image by angle.

Required Keys:

• img

Modified Keys:

• img

Parameters
• degrees (sequence | int) – Range of degrees to select from. If degrees is an int instead

of sequence like (min, max), the range of degrees will be (-degrees, +degrees).

• interpolation (str, optional) – Interpolation method, accepted values are ‘nearest’,
‘bilinear’, ‘bicubic’, ‘area’, ‘lanczos’. Defaults to ‘nearest’.

• expand (bool, optional) – Optional expansion flag. If true, expands the output to make
it large enough to hold the entire rotated image. If false or omitted, make the output image the
same size as the input image. Note that the expand flag assumes rotation around the center
and no translation. Defaults to False.

• center (Tuple[float], optional) – Center point (w, h) of the rotation in the source
image. If not specified, the center of the image will be used. Defaults to None.

• fill (int, optional) – Pixel fill value for the area outside the rotated image. Default to
0.

static get_params(degrees: List[float])→ float
Get parameters for rotate for a random rotation.

Parameters degrees (List[float]) – Range of degrees to select from.

Returns
angle parameter to be passed to rotate for random rotation.

Return type float

transform(results: dict)→ dict
Randomly rotate the image.

Parameters results (dict) – Result dict from previous pipeline.

Returns Result dict with the transformed image.

Return type dict

34.2. transforms 165

MMSelfSup, Release 1.0.0rc6

class mmselfsup.datasets.transforms.RandomSolarize(threshold: int = 128, prob: float = 0.5)
Solarization augmentation refers to BYOL.

Paper link.

Required Keys:

• img

Modified Keys:

• img

Parameters
• threshold (float, optional) – The solarization threshold. Defaults to 128.

• prob (float, optional) – Probability. Defaults to 0.5.

transform(results: dict)→ dict
Apply Solarize augmentation to the given image.

Parameters results (dict) – Results from previous pipeline.

Returns Results after applying this transformation.

Return type dict

class mmselfsup.datasets.transforms.RotationWithLabels
Rotation prediction.

Required Keys:

• img

Modified Keys:

• img

Added Keys:

• rot_label

Rotate each image with 0, 90, 180, and 270 degrees and give labels 0, 1, 2, 3 correspodingly.

transform(results: dict)→ dict
Apply rotation augmentation to the given image.

Parameters results (dict) – Results from previous pipeline.

Returns Results after applying this transformation.

Return type dict

class mmselfsup.datasets.transforms.SimMIMMaskGenerator(input_size: int = 192, mask_patch_size: int
= 32, model_patch_size: int = 4,
mask_ratio: float = 0.6)

Generate random block mask for each Image.

Added Keys:

• mask

This module is used in SimMIM to generate masks.

Parameters
• input_size (int) – Size of input image. Defaults to 192.

166 Chapter 34. mmselfsup.datasets

https://arxiv.org/abs/2006.07733

MMSelfSup, Release 1.0.0rc6

• mask_patch_size (int) – Size of each block mask. Defaults to 32.

• model_patch_size (int) – Patch size of each token. Defaults to 4.

• mask_ratio (float) – The mask ratio of image. Defaults to 0.6.

transform(results: dict)→ dict
Method to generate random block mask for each Image in SimMIM.

Parameters results (dict) – Result dict from previous pipeline.

Returns Result dict with added key mask.

Return type dict

34.3 samplers

class mmselfsup.datasets.samplers.DeepClusterSampler(dataset: Sized, shuffle: bool = True, seed:
Optional[int] = None, replace: bool = False,
round_up: bool = True)

The sampler inherits DefaultSampler from mmengine.

This sampler supports to set replace to be True to get indices. Besides, it defines function
set_uniform_indices, which is applied in DeepClusterHook.

Parameters
• dataset (Sized) – The dataset.

• shuffle (bool) – Whether shuffle the dataset or not. Defaults to True.

• seed (int, optional) – Random seed used to shuffle the sampler if shuffle=True. This
number should be identical across all processes in the distributed group. Defaults to None.

• replace (bool) – Replace or not in random shuffle. It works on when shuffle is True.
Defaults to False.

• round_up (bool) – Whether to add extra samples to make the number of samples evenly
divisible by the world size. Defaults to True.

set_uniform_indices(labels: list, num_classes: int)→ None
The function is applied in DeepClusterHook for uniform sampling.

Parameters
• labels (list) – The updated labels after clustering.

• num_classes (int) – number of clusters.

Returns None

34.3. samplers 167

MMSelfSup, Release 1.0.0rc6

168 Chapter 34. mmselfsup.datasets

CHAPTER

THIRTYFIVE

MMSELFSUP.ENGINE

35.1 hooks

class mmselfsup.engine.hooks.DeepClusterHook(extract_dataloader: dict, clustering: dict, unif_sampling:
bool, reweight: bool, reweight_pow: float, init_memory:
bool = False, initial: bool = True, interval: int = 1, seed:
Optional[int] = None)

Hook for DeepCluster.

This hook includes the global clustering process in DC.

Parameters
• extractor (dict) – Config dict for feature extraction.

• clustering (dict) – Config dict that specifies the clustering algorithm.

• unif_sampling (bool) – Whether to apply uniform sampling.

• reweight (bool) – Whether to apply loss re-weighting.

• reweight_pow (float) – The power of re-weighting.

• init_memory (bool) – Whether to initialize memory banks used in ODC. Defaults to False.

• initial (bool) – Whether to call the hook initially. Defaults to True.

• interval (int) – Frequency of epochs to call the hook. Defaults to 1.

• seed (int, optional) – Random seed. Defaults to None.

after_train_epoch(runner)→ None
Run cluster after indicated epoch.

before_train(runner)→ None
Run cluster before training.

deepcluster(runner)→ None
Call cluster algorithm.

evaluate(runner, new_labels: numpy.ndarray)→ None
Evaluate with labels histogram.

set_reweight(runner, labels: numpy.ndarray, reweight_pow: float = 0.5)
Loss re-weighting.

Re-weighting the loss according to the number of samples in each class.

Parameters
• runner (mmengine.Runner) – mmengine Runner.

169

MMSelfSup, Release 1.0.0rc6

• labels (numpy.ndarray) – Label assignments.

• reweight_pow (float, optional) – The power of re-weighting. Defaults to 0.5.

class mmselfsup.engine.hooks.DenseCLHook(start_iters: int = 1000)
Hook for DenseCL.

This hook includes loss_lambda warmup in DenseCL. Borrowed from the authors’ code: https://github.com/
WXinlong/DenseCL.

Parameters start_iters (int) – The number of warmup iterations to set loss_lambda=0. De-
faults to 1000.

before_train(runner)→ None
Obtain loss_lambda from algorithm.

before_train_iter(runner, batch_idx: int, data_batch: Optional[Sequence[dict]] = None)→ None
Adjust loss_lambda every train iter.

class mmselfsup.engine.hooks.ODCHook(centroids_update_interval: int, deal_with_small_clusters_interval:
int, evaluate_interval: int, reweight: bool, reweight_pow: float,
dist_mode: bool = True)

Hook for ODC.

This hook includes the online clustering process in ODC.

Parameters
• centroids_update_interval (int) – Frequency of iterations to update centroids.

• deal_with_small_clusters_interval (int) – Frequency of iterations to deal with
small clusters.

• evaluate_interval (int) – Frequency of iterations to evaluate clusters.

• reweight (bool) – Whether to perform loss re-weighting.

• reweight_pow (float) – The power of re-weighting.

• dist_mode (bool) – Use distributed training or not. Defaults to True.

after_train_epoch(runner)→ None
Save cluster.

after_train_iter(runner, batch_idx: int, data_batch: Optional[Sequence[dict]] = None, outputs:
Optional[dict] = None)→ None

Update cluster centroids and the loss_weight.

evaluate(runner, new_labels: numpy.ndarray)→ None
Evaluate with labels histogram.

set_reweight(runner, labels: Optional[numpy.ndarray] = None, reweight_pow: float = 0.5)
Loss re-weighting.

Re-weighting the loss according to the number of samples in each class.

Parameters
• runner (mmengine.Runner) – mmengine Runner.

• labels (numpy.ndarray) – Label assignments.

• reweight_pow (float, optional) – The power of re-weighting. Defaults to 0.5.

170 Chapter 35. mmselfsup.engine

https://github.com/WXinlong/DenseCL
https://github.com/WXinlong/DenseCL

MMSelfSup, Release 1.0.0rc6

class mmselfsup.engine.hooks.SimSiamHook(fix_pred_lr: bool, lr: float, adjust_by_epoch: Optional[bool] =
True)

Hook for SimSiam.

This hook is for SimSiam to fix learning rate of predictor.

Parameters
• fix_pred_lr (bool) – whether to fix the lr of predictor or not.

• lr (float) – the value of fixed lr.

• adjust_by_epoch (bool, optional) – whether to set lr by epoch or iter. Defaults to
True.

before_train_epoch(runner)→ None
fix lr of predictor by epoch.

before_train_iter(runner, batch_idx: int, data_batch: Optional[Sequence[dict]] = None)→ None
fix lr of predictor by iter.

class mmselfsup.engine.hooks.SwAVHook(batch_size: int, epoch_queue_starts: Optional[int] = 15,
crops_for_assign: Optional[List[int]] = [0, 1], feat_dim:
Optional[int] = 128, queue_length: Optional[int] = 0, interval:
Optional[int] = 1, frozen_layers_cfg: Optional[Dict] = {})

Hook for SwAV.

This hook builds the queue in SwAV according to epoch_queue_starts. The queue will be saved in runner.
work_dir or loaded at start epoch if the path folder has queues saved before.

Parameters
• batch_size (int) – the batch size per GPU for computing.

• epoch_queue_starts (int, optional) – from this epoch, starts to use the queue. De-
faults to 15.

• crops_for_assign (list[int], optional) – list of crops id used for computing as-
signments. Defaults to [0, 1].

• feat_dim (int, optional) – feature dimension of output vector. Defaults to 128.

• queue_length (int, optional) – length of the queue (0 for no queue). Defaults to 0.

• interval (int, optional) – the interval to save the queue. Defaults to 1.

• frozen_layers_cfg (dict, optional) – Dict to config frozen layers. The key-value
pair is layer name and its frozen iters. If frozen, the layers don’t need gradient. Defaults to
dict().

after_train_epoch(runner)→ None
Save the queues locally.

before_run(runner)→ None
Check whether the queues exist locally or not.

before_train_epoch(runner)→ None
Check the queues’ state.

before_train_iter(runner, batch_idx: int, data_batch: Optional[Sequence[dict]] = None)→ None
Freeze layers before specific iters according to the config.

35.1. hooks 171

MMSelfSup, Release 1.0.0rc6

35.2 optimizers

class mmselfsup.engine.optimizers.LARS(params: Iterable, lr: float, momentum: float = 0, weight_decay:
float = 0, dampening: float = 0, eta: float = 0.001, nesterov: bool
= False, eps: float = 1e-08)

Implements layer-wise adaptive rate scaling for SGD.

Based on Algorithm 1 of the following paper by You, Gitman, and Ginsburg. Large Batch Training of Convolu-
tional Networks:.

Parameters
• params (Iterable) – Iterable of parameters to optimize or dicts defining parameter groups.

• lr (float) – Base learning rate.

• momentum (float) – Momentum factor. Defaults to 0.

• weight_decay (float) – Weight decay (L2 penalty). Defaults to 0.

• dampening (float) – Dampening for momentum. Defaults to 0.

• eta (float) – LARS coefficient. Defaults to 0.001.

• nesterov (bool) – Enables Nesterov momentum. Defaults to False.

• eps (float) – A small number to avoid dviding zero. Defaults to 1e-8.

Example

>>> optimizer = LARS(model.parameters(), lr=0.1, momentum=0.9,
>>> weight_decay=1e-4, eta=1e-3)
>>> optimizer.zero_grad()
>>> loss_fn(model(input), target).backward()
>>> optimizer.step()

step(closure=None)→ torch.Tensor
Performs a single optimization step.

Parameters closure (callable, optional) – A closure that reevaluates the model and re-
turns the loss.

class mmselfsup.engine.optimizers.LearningRateDecayOptimWrapperConstructor(optim_wrapper_cfg:
dict,
paramwise_cfg:
Optional[dict] =
None)

Different learning rates are set for different layers of backbone.

Note: Currently, this optimizer constructor is built for ViT and Swin.

In addition to applying layer-wise learning rate decay schedule, the paramwise_cfg only supports weight decay
customization.

add_params(params: List[dict], module: torch.nn.modules.module.Module, optimizer_cfg: dict, **kwargs)
→ None

Add all parameters of module to the params list.

The parameters of the given module will be added to the list of param groups, with specific rules defined
by paramwise_cfg.

172 Chapter 35. mmselfsup.engine

https://arxiv.org/abs/1708.03888
https://arxiv.org/abs/1708.03888

MMSelfSup, Release 1.0.0rc6

Parameters
• params (List[dict]) – A list of param groups, it will be modified in place.

• module (nn.Module) – The module to be added.

• optimizer_cfg (dict) – The configuration of optimizer.

• prefix (str) – The prefix of the module.

35.2. optimizers 173

MMSelfSup, Release 1.0.0rc6

174 Chapter 35. mmselfsup.engine

CHAPTER

THIRTYSIX

MMSELFSUP.EVALUATION

36.1 functional

mmselfsup.evaluation.functional.knn_eval(train_features: torch.Tensor, train_labels: torch.Tensor,
test_features: torch.Tensor, test_labels: torch.Tensor, k: int, T:
float, num_classes: int = 1000)→ Tuple[float, float]

Compute accuracy of knn classifier predictions.

Parameters
• train_features (Tensor) – Extracted features in the training set.

• train_labels (Tensor) – Labels in the training set.

• test_features (Tensor) – Extracted features in the testing set.

• test_labels (Tensor) – Labels in the testing set.

• k (int) – Number of NN to use.

• T (float) – Temperature used in the voting coefficient.

• num_classes (int) – Number of classes. Defaults to 1000.

Returns The top1 and top5 accuracy.

Return type Tuple[float, float]

175

MMSelfSup, Release 1.0.0rc6

176 Chapter 36. mmselfsup.evaluation

CHAPTER

THIRTYSEVEN

MMSELFSUP.MODELS

37.1 algorithms

class mmselfsup.models.algorithms.BEiT(backbone: dict, neck: Optional[dict] = None, head:
Optional[dict] = None, target_generator: Optional[dict] = None,
pretrained: Optional[str] = None, data_preprocessor:
Optional[Union[dict, torch.nn.modules.module.Module]] = None,
init_cfg: Optional[dict] = None)

BEiT v1/v2.

Implementation of BEiT: BERT Pre-Training of Image Transformers and BEiT v2: Masked Image Modeling
with Vector-Quantized Visual Tokenizers.

loss(batch_inputs: List[torch.Tensor], data_samples:
List[mmselfsup.structures.selfsup_data_sample.SelfSupDataSample], **kwargs)→ Dict[str,
torch.Tensor]

The forward function in training.

Parameters
• batch_inputs (List[torch.Tensor]) – The input images.

• data_samples (List[SelfSupDataSample]) – All elements required during the for-
ward function.

Returns A dictionary of loss components.

Return type Dict[str, torch.Tensor]

class mmselfsup.models.algorithms.BYOL(backbone: dict, neck: dict, head: dict, base_momentum: float =
0.996, pretrained: Optional[str] = None, data_preprocessor:
Optional[dict] = None, init_cfg: Optional[Union[dict,
List[dict]]] = None)

BYOL.

Implementation of Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning.

Parameters
• backbone (dict) – Config dict for module of backbone.

• neck (dict) – Config dict for module of deep features to compact feature vectors.

• head (dict) – Config dict for module of head functions.

• base_momentum (float) – The base momentum coefficient for the target network. Defaults
to 0.996.

177

https://arxiv.org/abs/2106.08254
https://arxiv.org/abs/2208.06366
https://arxiv.org/abs/2208.06366
https://arxiv.org/abs/2006.07733

MMSelfSup, Release 1.0.0rc6

• pretrained (str, optional) – The pretrained checkpoint path, support local path and
remote path. Defaults to None.

• data_preprocessor (dict, optional) – The config for preprocessing input data.
If None or no specified type, it will use “SelfSupDataPreprocessor” as type. See
SelfSupDataPreprocessor for more details. Defaults to None.

• init_cfg (Union[List[dict], dict], optional) – Config dict for weight initializa-
tion. Defaults to None.

extract_feat(inputs: List[torch.Tensor], **kwargs)→ Tuple[torch.Tensor]
Function to extract features from backbone.

Parameters batch_inputs (List[torch.Tensor]) – The input images.

Returns Backbone outputs.

Return type Tuple[torch.Tensor]

loss(inputs: List[torch.Tensor], data_samples:
List[mmselfsup.structures.selfsup_data_sample.SelfSupDataSample], **kwargs)→ Dict[str,
torch.Tensor]

The forward function in training.

Parameters
• inputs (List[torch.Tensor]) – The input images.

• data_samples (List[SelfSupDataSample]) – All elements required during the for-
ward function.

Returns A dictionary of loss components.

Return type Dict[str, torch.Tensor]

class mmselfsup.models.algorithms.BarlowTwins(backbone: dict, neck: Optional[dict] = None, head:
Optional[dict] = None, target_generator: Optional[dict]
= None, pretrained: Optional[str] = None,
data_preprocessor: Optional[Union[dict,
torch.nn.modules.module.Module]] = None, init_cfg:
Optional[dict] = None)

BarlowTwins.

Implementation of Barlow Twins: Self-Supervised Learning via Redundancy Reduction. Part of the code is
borrowed from: https://github.com/facebookresearch/barlowtwins/blob/main/main.py.

extract_feat(inputs: List[torch.Tensor], **kwargs)→ Tuple[torch.Tensor]
Function to extract features from backbone.

Parameters
• inputs (List[torch.Tensor]) – The input images.

• data_samples (List[SelfSupDataSample]) – All elements required during the for-
ward function.

Returns Backbone outputs.

Return type Tuple[torch.Tensor]

loss(inputs: List[torch.Tensor], data_samples:
List[mmselfsup.structures.selfsup_data_sample.SelfSupDataSample], **kwargs)→ Dict[str,
torch.Tensor]

The forward function in training.

178 Chapter 37. mmselfsup.models

https://arxiv.org/abs/2103.03230
https://github.com/facebookresearch/barlowtwins/blob/main/main.py

MMSelfSup, Release 1.0.0rc6

Parameters
• inputs (List[torch.Tensor]) – The input images.

• data_samples (List[SelfSupDataSample]) – All elements required during the for-
ward function.

Returns A dictionary of loss components.

Return type Dict[str, torch.Tensor]

class mmselfsup.models.algorithms.BaseModel(backbone: dict, neck: Optional[dict] = None, head:
Optional[dict] = None, target_generator: Optional[dict] =
None, pretrained: Optional[str] = None,
data_preprocessor: Optional[Union[dict,
torch.nn.modules.module.Module]] = None, init_cfg:
Optional[dict] = None)

BaseModel for SelfSup.

All algorithms should inherit this module.

Parameters
• backbone (dict) – The backbone module. See mmcls.models.backbones.

• neck (dict, optional) – The neck module to process features from backbone. See
mmcls.models.necks. Defaults to None.

• head (dict, optional) – The head module to do prediction and calculate loss from pro-
cessed features. See mmcls.models.heads. Notice that if the head is not set, almost all
methods cannot be used except extract_feat(). Defaults to None.

• target_generator – (dict, optional): The target_generator module to generate targets
for self-supervised learning optimization, such as HOG, extracted features from other
modules(DALL-E, CLIP), etc.

• pretrained (str, optional) – The pretrained checkpoint path, support local path and
remote path. Defaults to None.

• data_preprocessor (Union[dict, nn.Module], optional) – The config for prepro-
cessing input data. If None or no specified type, it will use “SelfSupDataPreprocessor” as
type. See SelfSupDataPreprocessor for more details. Defaults to None.

• init_cfg (dict, optional) – the config to control the initialization. Defaults to None.

extract_feat(inputs: torch.Tensor)
Extract features from the input tensor with shape (N, C, . . .).

This is a abstract method, and subclass should overwrite this methods if needed.

Parameters inputs (Tensor) – A batch of inputs. The shape of it should be (num_samples,
num_channels, *img_shape).

Returns The output of specified stage. The output depends on detailed implementation.

Return type tuple | Tensor

forward(inputs: torch.Tensor, data_samples:
Optional[List[mmselfsup.structures.selfsup_data_sample.SelfSupDataSample]] = None, mode: str
= 'tensor')

Returns losses or predictions of training, validation, testing, and simple inference process.

This module overwrites the abstract method in BaseModel.

Parameters

37.1. algorithms 179

MMSelfSup, Release 1.0.0rc6

• inputs (torch.Tensor) – batch input tensor collated by data_preprocessor.

• data_samples (List[BaseDataElement], optional) – data samples collated by
data_preprocessor.

• mode (str) – mode should be one of loss, predict and tensor.

– loss: Called by train_step and return loss dict used for logging

– predict: Called by val_step and test_step and return list of BaseDataElement
results used for computing metric.

– tensor: Called by custom use to get Tensor type results.

Returns
• If mode == loss, return a dict of loss tensor used for backward and logging.

• If mode == predict, return a list of BaseDataElement for computing metric and
getting inference result.

• If mode == tensor, return a tensor or tuple of tensor or ``dict of tensor for custom use.

Return type ForwardResults (dict or list)

loss(inputs: torch.Tensor, data_samples:
List[mmselfsup.structures.selfsup_data_sample.SelfSupDataSample])→ dict

Calculate losses from a batch of inputs and data samples.

This is a abstract method, and subclass should overwrite this methods if needed.

Parameters
• inputs (torch.Tensor) – The input tensor with shape (N, C, . . .) in general.

• data_samples (List[SelfSupDataSample]) – The annotation data of every samples.

Returns A dictionary of loss components.

Return type dict[str, Tensor]

predict(inputs: tuple, data_samples:
Optional[List[mmselfsup.structures.selfsup_data_sample.SelfSupDataSample]] = None, **kwargs)
→ List[mmselfsup.structures.selfsup_data_sample.SelfSupDataSample]

Predict results from the extracted features.

This module returns the logits before loss, which are used to compute all kinds of metrics. This is a abstract
method, and subclass should overwrite this methods if needed.

Parameters
• feats (tuple) – The features extracted from the backbone.

• data_samples (List[BaseDataElement], optional) – The annotation data of every
samples. Defaults to None.

• **kwargs – Other keyword arguments accepted by the predict method of head.

property with_head: bool
Check if the model has a head module.

property with_neck: bool
Check if the model has a neck module.

property with_target_generator: bool
Check if the model has a target_generator module.

180 Chapter 37. mmselfsup.models

MMSelfSup, Release 1.0.0rc6

class mmselfsup.models.algorithms.CAE(backbone: dict, neck: dict, head: dict, target_generator:
Optional[dict] = None, base_momentum: float = 0.0,
data_preprocessor: Optional[dict] = None, init_cfg:
Optional[Union[dict, List[dict]]] = None)

CAE.

Implementation of Context Autoencoder for Self-Supervised Representation Learning.

Parameters
• backbone (dict) – Config dict for module of backbone.

• neck (dict) – Config dict for module of neck.

• head (dict) – Config dict for module of head functions.

• target_generator – (dict, optional): The target_generator module to generate targets
for self-supervised learning optimization, such as HOG, extracted features from other
modules(DALL-E, CLIP), etc.

• base_momentum (float) – The base momentum coefficient for the target network. Defaults
to 0.0.

• data_preprocessor (dict, optional) – The config for preprocessing input data.
If None or no specified type, it will use “SelfSupDataPreprocessor” as type. See
SelfSupDataPreprocessor for more details. Defaults to None.

• init_cfg (Union[List[dict], dict], optional) – Config dict for weight initializa-
tion. Defaults to None.

init_weights()→ None
Initialize weights.

loss(inputs: List[torch.Tensor], data_samples:
List[mmselfsup.structures.selfsup_data_sample.SelfSupDataSample], **kwargs)→ Dict[str,
torch.Tensor]

The forward function in training.

Parameters
• inputs (List[torch.Tensor]) – The input images.

• data_samples (List[SelfSupDataSample]) – All elements required during the for-
ward function.

Returns A dictionary of loss components.

Return type Dict[str, torch.Tensor]

momentum_update()→ None
Momentum update of the teacher network.

class mmselfsup.models.algorithms.DeepCluster(backbone: dict, neck: dict, head: dict, pretrained:
Optional[str] = None, data_preprocessor:
Optional[dict] = None, init_cfg: Optional[Union[dict,
List[dict]]] = None)

DeepCluster.

Implementation of Deep Clustering for Unsupervised Learning of Visual Features. The clustering operation is
in engine/hooks/deepcluster_hook.py.

Parameters
• backbone (dict) – Config dict for module of backbone.

37.1. algorithms 181

https://arxiv.org/abs/2202.03026
https://arxiv.org/abs/1807.05520

MMSelfSup, Release 1.0.0rc6

• neck (dict) – Config dict for module of deep features to compact feature vectors.

• head (dict) – Config dict for module of head functions.

• pretrained (str, optional) – The pretrained checkpoint path, support local path and
remote path. Defaults to None.

• data_preprocessor (dict, optional) – The config for preprocessing input data.
If None or no specified type, it will use “SelfSupDataPreprocessor” as type. See
SelfSupDataPreprocessor for more details. Defaults to None.

• init_cfg (Union[List[dict], dict], optional) – Config dict for weight initializa-
tion. Defaults to None.

extract_feat(inputs: List[torch.Tensor], **kwarg)→ Tuple[torch.Tensor]
Function to extract features from backbone.

Parameters
• inputs (List[torch.Tensor]) – The input images.

• data_samples (List[SelfSupDataSample]) – All elements required during the for-
ward function.

Returns Backbone outputs.

Return type Tuple[torch.Tensor]

loss(inputs: List[torch.Tensor], data_samples:
List[mmselfsup.structures.selfsup_data_sample.SelfSupDataSample], **kwargs)→ Dict[str,
torch.Tensor]

The forward function in training.

Parameters
• inputs (List[torch.Tensor]) – The input images.

• data_samples (List[SelfSupDataSample]) – All elements required during the for-
ward function.

Returns A dictionary of loss components.

Return type Dict[str, torch.Tensor]

predict(inputs: List[torch.Tensor], data_samples:
List[mmselfsup.structures.selfsup_data_sample.SelfSupDataSample], **kwargs)→
List[mmselfsup.structures.selfsup_data_sample.SelfSupDataSample]

The forward function in testing.

Parameters
• inputs (List[torch.Tensor]) – The input images.

• data_samples (List[SelfSupDataSample]) – All elements required during the for-
ward function.

Returns The prediction from model.

Return type List[SelfSupDataSample]

182 Chapter 37. mmselfsup.models

MMSelfSup, Release 1.0.0rc6

class mmselfsup.models.algorithms.DenseCL(backbone: dict, neck: dict, head: dict, queue_len: int =
65536, feat_dim: int = 128, momentum: float = 0.999,
loss_lambda: float = 0.5, pretrained: Optional[str] = None,
data_preprocessor: Optional[dict] = None, init_cfg:
Optional[Union[dict, List[dict]]] = None)

DenseCL.

Implementation of Dense Contrastive Learning for Self-Supervised Visual Pre-Training. Borrowed
from the authors’ code: https://github.com/WXinlong/DenseCL. The loss_lambda warmup is in en-
gine/hooks/densecl_hook.py.

Parameters
• backbone (dict) – Config dict for module of backbone.

• neck (dict) – Config dict for module of deep features to compact feature vectors.

• head (dict) – Config dict for module of head functions.

• queue_len (int) – Number of negative keys maintained in the queue. Defaults to 65536.

• feat_dim (int) – Dimension of compact feature vectors. Defaults to 128.

• momentum (float) – Momentum coefficient for the momentum-updated encoder. Defaults
to 0.999.

• loss_lambda (float) – Loss weight for the single and dense contrastive loss. Defaults to
0.5.

• pretrained (str, optional) – The pretrained checkpoint path, support local path and
remote path. Defaults to None.

• data_preprocessor (dict, optional) – The config for preprocessing input data.
If None or no specified type, it will use “SelfSupDataPreprocessor” as type. See
SelfSupDataPreprocessor for more details. Defaults to None.

• init_cfg (Union[List[dict], dict], optional) – Config dict for weight initializa-
tion. Defaults to None.

extract_feat(inputs: List[torch.Tensor], **kwargs)→ Tuple[torch.Tensor]
Function to extract features from backbone.

Parameters
• inputs (List[torch.Tensor]) – The input images.

• data_samples (List[SelfSupDataSample]) – All elements required during the for-
ward function.

Returns Backbone outputs.

Return type Tuple[torch.Tensor]

loss(inputs: List[torch.Tensor], data_samples:
List[mmselfsup.structures.selfsup_data_sample.SelfSupDataSample], **kwargs)→ Dict[str,
torch.Tensor]

The forward function in training.

Parameters
• inputs (List[torch.Tensor]) – The input images.

• data_samples (List[SelfSupDataSample]) – All elements required during the for-
ward function.

37.1. algorithms 183

https://arxiv.org/abs/2011.09157
https://github.com/WXinlong/DenseCL

MMSelfSup, Release 1.0.0rc6

Returns A dictionary of loss components.

Return type Dict[str, torch.Tensor]

predict(inputs: List[torch.Tensor], data_samples:
List[mmselfsup.structures.selfsup_data_sample.SelfSupDataSample], **kwargs)→
mmselfsup.structures.selfsup_data_sample.SelfSupDataSample

Predict results from the extracted features.

Parameters
• batch_inputs (List[torch.Tensor]) – The input images.

• data_samples (List[SelfSupDataSample]) – All elements required during the for-
ward function.

Returns The prediction from model.

Return type SelfSupDataSample

class mmselfsup.models.algorithms.EVA(backbone: dict, neck: Optional[dict] = None, head: Optional[dict]
= None, target_generator: Optional[dict] = None, pretrained:
Optional[str] = None, data_preprocessor: Optional[Union[dict,
torch.nn.modules.module.Module]] = None, init_cfg:
Optional[dict] = None)

EVA.

Implementation of EVA: Exploring the Limits of Masked Visual Representation Learning at Scale.

loss(inputs: List[torch.Tensor], data_samples:
List[mmselfsup.structures.selfsup_data_sample.SelfSupDataSample], **kwargs)→ Dict[str,
torch.Tensor]

The forward function in training.

Parameters
• inputs (List[torch.Tensor]) – The input images.

• data_samples (List[SelfSupDataSample]) – All elements required during the for-
ward function.

Returns A dictionary of loss components.

Return type Dict[str, torch.Tensor]

class mmselfsup.models.algorithms.MAE(backbone: dict, neck: Optional[dict] = None, head: Optional[dict]
= None, target_generator: Optional[dict] = None, pretrained:
Optional[str] = None, data_preprocessor: Optional[Union[dict,
torch.nn.modules.module.Module]] = None, init_cfg:
Optional[dict] = None)

MAE.

Implementation of Masked Autoencoders Are Scalable Vision Learners.

extract_feat(inputs: List[torch.Tensor], data_samples:
Optional[List[mmselfsup.structures.selfsup_data_sample.SelfSupDataSample]] = None,
**kwarg)→ Tuple[torch.Tensor]

The forward function to extract features from neck.

Parameters inputs (List[torch.Tensor]) – The input images.

Returns Neck outputs.

Return type Tuple[torch.Tensor]

184 Chapter 37. mmselfsup.models

https://arxiv.org/abs/2211.07636
https://arxiv.org/abs/2111.06377

MMSelfSup, Release 1.0.0rc6

loss(inputs: List[torch.Tensor], data_samples:
List[mmselfsup.structures.selfsup_data_sample.SelfSupDataSample], **kwargs)→ Dict[str,
torch.Tensor]

The forward function in training.

Parameters
• inputs (List[torch.Tensor]) – The input images.

• data_samples (List[SelfSupDataSample]) – All elements required during the for-
ward function.

Returns A dictionary of loss components.

Return type Dict[str, torch.Tensor]

reconstruct(features: torch.Tensor, data_samples:
Optional[List[mmselfsup.structures.selfsup_data_sample.SelfSupDataSample]] = None,
**kwargs)→ mmselfsup.structures.selfsup_data_sample.SelfSupDataSample

The function is for image reconstruction.

Parameters
• features (torch.Tensor) – The input images.

• data_samples (List[SelfSupDataSample]) – All elements required during the for-
ward function.

Returns The prediction from model.

Return type SelfSupDataSample

class mmselfsup.models.algorithms.MILAN(backbone: dict, neck: Optional[dict] = None, head:
Optional[dict] = None, target_generator: Optional[dict] =
None, pretrained: Optional[str] = None, data_preprocessor:
Optional[Union[dict, torch.nn.modules.module.Module]] =
None, init_cfg: Optional[dict] = None)

MILAN.

Implementation of MILAN: Masked Image Pretraining on Language Assisted Representation.

loss(inputs: List[torch.Tensor], data_samples:
List[mmselfsup.structures.selfsup_data_sample.SelfSupDataSample], **kwargs)→ Dict[str,
torch.Tensor]

The forward function in training.

Parameters
• inputs (List[torch.Tensor]) – The input images.

• data_samples (List[SelfSupDataSample]) – All elements required during the for-
ward function.

Returns A dictionary of loss components.

Return type Dict[str, torch.Tensor]

class mmselfsup.models.algorithms.MaskFeat(backbone: dict, neck: Optional[dict] = None, head:
Optional[dict] = None, target_generator: Optional[dict] =
None, pretrained: Optional[str] = None, data_preprocessor:
Optional[Union[dict, torch.nn.modules.module.Module]] =
None, init_cfg: Optional[dict] = None)

MaskFeat.

37.1. algorithms 185

https://arxiv.org/abs/2208.06049

MMSelfSup, Release 1.0.0rc6

Implementation of Masked Feature Prediction for Self-Supervised Visual Pre-Training.

extract_feat(inputs: List[torch.Tensor], data_samples:
List[mmselfsup.structures.selfsup_data_sample.SelfSupDataSample], compute_hog: bool =
True, **kwarg)→ Tuple[torch.Tensor]

The forward function to extract features from neck.

Parameters
• inputs (List[torch.Tensor]) – The input images and mask.

• data_samples (List[SelfSupDataSample]) – All elements required during the for-
ward function.

• compute_hog (bool) – Whether to compute hog during extraction. If True, the batch size
of inputs need to be 1. Defaults to True.

Returns Neck outputs.

Return type Tuple[torch.Tensor]

loss(inputs: List[torch.Tensor], data_samples:
List[mmselfsup.structures.selfsup_data_sample.SelfSupDataSample], **kwargs)→ Dict[str,
torch.Tensor]

The forward function in training.

Parameters
• inputs (List[torch.Tensor]) – The input images.

• data_samples (List[SelfSupDataSample]) – All elements required during the for-
ward function.

Returns A dictionary of loss components.

Return type Dict[str, torch.Tensor]

reconstruct(features: List[torch.Tensor], data_samples:
Optional[List[mmselfsup.structures.selfsup_data_sample.SelfSupDataSample]] = None,
**kwargs)→ mmselfsup.structures.selfsup_data_sample.SelfSupDataSample

The function is for image reconstruction.

Parameters
• features (List[torch.Tensor]) – The input images.

• data_samples (List[SelfSupDataSample]) – All elements required during the for-
ward function.

Returns The prediction from model.

Return type SelfSupDataSample

class mmselfsup.models.algorithms.MixMIM(backbone: dict, neck: Optional[dict] = None, head:
Optional[dict] = None, pretrained: Optional[str] = None,
data_preprocessor: Optional[Union[dict,
torch.nn.modules.module.Module]] = None, init_cfg:
Optional[dict] = None)

MiXMIM.

Implementation of MixMIM: Mixed and Masked Image Modeling for Efficient Visual Representation Learning..

186 Chapter 37. mmselfsup.models

https://arxiv.org/abs/2112.09133
https://arxiv.org/abs/2205.13137

MMSelfSup, Release 1.0.0rc6

loss(inputs: List[torch.Tensor], data_samples:
List[mmselfsup.structures.selfsup_data_sample.SelfSupDataSample], **kwargs)→ Dict[str,
torch.Tensor]

The forward function in training.

Parameters
• inputs (List[torch.Tensor]) – The input images.

• data_samples (List[SelfSupDataSample]) – All elements required during the for-
ward function.

Returns A dictionary of loss components.

Return type Dict[str, torch.Tensor]

class mmselfsup.models.algorithms.MoCo(backbone: dict, neck: dict, head: dict, queue_len: int = 65536,
feat_dim: int = 128, momentum: float = 0.999, pretrained:
Optional[str] = None, data_preprocessor: Optional[dict] =
None, init_cfg: Optional[Union[dict, List[dict]]] = None)

MoCo.

Implementation of Momentum Contrast for Unsupervised Visual Representation Learning. Part of the code is
borrowed from: https://github.com/facebookresearch/moco/blob/master/moco/builder.py.

Parameters
• backbone (dict) – Config dict for module of backbone.

• neck (dict) – Config dict for module of deep features to compact feature vectors.

• head (dict) – Config dict for module of head functions.

• queue_len (int) – Number of negative keys maintained in the queue. Defaults to 65536.

• feat_dim (int) – Dimension of compact feature vectors. Defaults to 128.

• momentum (float) – Momentum coefficient for the momentum-updated encoder. Defaults
to 0.999.

• pretrained (str, optional) – The pretrained checkpoint path, support local path and
remote path. Defaults to None.

• data_preprocessor (dict, optional) – The config for preprocessing input data.
If None or no specified type, it will use “SelfSupDataPreprocessor” as type. See
SelfSupDataPreprocessor for more details. Defaults to None.

• init_cfg (Union[List[dict], dict], optional) – Config dict for weight initializa-
tion. Defaults to None.

extract_feat(inputs: List[torch.Tensor], **kwarg)→ Tuple[torch.Tensor]
Function to extract features from backbone.

Parameters
• inputs (List[torch.Tensor]) – The input images.

• data_samples (List[SelfSupDataSample]) – All elements required during the for-
ward function.

Returns Backbone outputs.

Return type Tuple[torch.Tensor]

37.1. algorithms 187

https://arxiv.org/abs/1911.05722
https://github.com/facebookresearch/moco/blob/master/moco/builder.py

MMSelfSup, Release 1.0.0rc6

loss(inputs: List[torch.Tensor], data_samples:
List[mmselfsup.structures.selfsup_data_sample.SelfSupDataSample], **kwargs)→ Dict[str,
torch.Tensor]

The forward function in training.

Parameters
• inputs (List[torch.Tensor]) – The input images.

• data_samples (List[SelfSupDataSample]) – All elements required during the for-
ward function.

Returns A dictionary of loss components.

Return type Dict[str, torch.Tensor]

class mmselfsup.models.algorithms.MoCoV3(backbone: dict, neck: dict, head: dict, base_momentum: float
= 0.99, pretrained: Optional[str] = None, data_preprocessor:
Optional[dict] = None, init_cfg: Optional[Union[dict,
List[dict]]] = None)

MoCo v3.

Implementation of An Empirical Study of Training Self-Supervised Vision Transformers.

Parameters
• backbone (dict) – Config dict for module of backbone

• neck (dict) – Config dict for module of deep features to compact feature vectors.

• head (dict) – Config dict for module of head functions.

• base_momentum (float) – Momentum coefficient for the momentum-updated encoder. De-
faults to 0.99.

• pretrained (str, optional) – The pretrained checkpoint path, support local path and
remote path. Defaults to None.

• data_preprocessor (dict, optional) – The config for preprocessing input data.
If None or no specified type, it will use “SelfSupDataPreprocessor” as type. See
SelfSupDataPreprocessor for more details. Defaults to None.

• init_cfg (Union[List[dict], dict], optional) – Config dict for weight initializa-
tion. Defaults to None.

extract_feat(inputs: List[torch.Tensor], **kwarg)→ Tuple[torch.Tensor]
Function to extract features from backbone.

Parameters
• inputs (List[torch.Tensor]) – The input images.

• data_samples (List[SelfSupDataSample]) – All

Returns Backbone outputs.

Return type Tuple[torch.Tensor]

loss(inputs: List[torch.Tensor], data_samples:
List[mmselfsup.structures.selfsup_data_sample.SelfSupDataSample], **kwargs)→ Dict[str,
torch.Tensor]

The forward function in training.

Parameters
• inputs (List[torch.Tensor]) – The input images.

188 Chapter 37. mmselfsup.models

https://arxiv.org/abs/2104.02057

MMSelfSup, Release 1.0.0rc6

• data_samples (List[SelfSupDataSample]) – All elements required during the for-
ward function.

Returns A dictionary of loss components.

Return type Dict[str, torch.Tensor]

class mmselfsup.models.algorithms.NPID(backbone: dict, neck: dict, head: dict, memory_bank: dict,
neg_num: int = 65536, ensure_neg: bool = False, pretrained:
Optional[str] = None, data_preprocessor: Optional[dict] =
None, init_cfg: Optional[Union[dict, List[dict]]] = None)

NPID.

Implementation of Unsupervised Feature Learning via Non-parametric Instance Discrimination.

Parameters
• backbone (dict) – Config dict for module of backbone.

• neck (dict) – Config dict for module of deep features to compact feature vectors.

• head (dict) – Config dict for module of head functions.

• memory_bank (dict) – Config dict for module of memory bank.

• neg_num (int) – Number of negative samples for each image. Defaults to 65536.

• ensure_neg (bool) – If False, there is a small probability that negative samples contain
positive ones. Defaults to False.

• pretrained (str, optional) – The pretrained checkpoint path, support local path and
remote path. Defaults to None.

• data_preprocessor (dict, optional) – The config for preprocessing input data.
If None or no specified type, it will use “SelfSupDataPreprocessor” as type. See
SelfSupDataPreprocessor for more details. Defaults to None.

• init_cfg (Union[List[dict], dict], optional) – Config dict for weight initializa-
tion. Defaults to None.

extract_feat(inputs: List[torch.Tensor], **kwarg)→ Tuple[torch.Tensor]
Function to extract features from backbone.

Parameters
• inputs (List[torch.Tensor]) – The input images.

• data_samples (List[SelfSupDataSample]) – All elements required during the for-
ward function.

Returns Backbone outputs.

Return type Tuple[torch.Tensor]

loss(inputs: List[torch.Tensor], data_samples:
List[mmselfsup.structures.selfsup_data_sample.SelfSupDataSample], **kwargs)→ Dict[str,
torch.Tensor]

The forward function in training.

Parameters
• inputs (List[torch.Tensor]) – The input images.

• data_samples (List[SelfSupDataSample]) – All elements required during the for-
ward function.

37.1. algorithms 189

https://arxiv.org/abs/1805.01978

MMSelfSup, Release 1.0.0rc6

Returns A dictionary of loss components.

Return type Dict[str, Tensor]

class mmselfsup.models.algorithms.ODC(backbone: dict, neck: dict, head: dict, memory_bank: dict,
pretrained: Optional[str] = None, data_preprocessor:
Optional[dict] = None, init_cfg: Optional[Union[dict, List[dict]]]
= None)

ODC.

Official implementation of Online Deep Clustering for Unsupervised Representation Learning. The operation
w.r.t. memory bank and loss re-weighting is in engine/hooks/odc_hook.py.

Parameters
• backbone (dict) – Config dict for module of backbone.

• neck (dict) – Config dict for module of deep features to compact feature vectors.

• head (dict) – Config dict for module of head functions.

• memory_bank (dict) – Config dict for module of memory bank.

• pretrained (str, optional) – The pretrained checkpoint path, support local path and
remote path. Defaults to None.

• data_preprocessor (dict, optional) – The config for preprocessing input data.
If None or no specified type, it will use “SelfSupDataPreprocessor” as type. See
SelfSupDataPreprocessor for more details. Defaults to None.

• init_cfg (Union[List[dict], dict], optional) – Config dict for weight initializa-
tion. Defaults to None.

extract_feat(inputs: List[torch.Tensor], **kwarg)→ Tuple[torch.Tensor]
Function to extract features from backbone.

Parameters
• inputs (List[torch.Tensor]) – The input images.

• data_samples (List[SelfSupDataSample]) – All elements required during the for-
ward function.

Returns Backbone outputs.

Return type Tuple[torch.Tensor]

loss(inputs: List[torch.Tensor], data_samples:
List[mmselfsup.structures.selfsup_data_sample.SelfSupDataSample], **kwargs)→ Dict[str,
torch.Tensor]

The forward function in training.

Parameters
• inputs (List[torch.Tensor]) – The input images.

• data_samples (List[SelfSupDataSample]) – All elements required during the for-
ward function.

Returns A dictionary of loss components.

Return type Dict[str, torch.Tensor]

190 Chapter 37. mmselfsup.models

https://arxiv.org/abs/2006.10645

MMSelfSup, Release 1.0.0rc6

predict(inputs: List[torch.Tensor], data_samples:
List[mmselfsup.structures.selfsup_data_sample.SelfSupDataSample], **kwargs)→
List[mmselfsup.structures.selfsup_data_sample.SelfSupDataSample]

The forward function in testing.

Parameters
• inputs (List[torch.Tensor]) – The input images.

• data_samples (List[SelfSupDataSample]) – All elements required during the for-
ward function.

Returns The prediction from model.

Return type List[SelfSupDataSample]

class mmselfsup.models.algorithms.RelativeLoc(backbone: dict, neck: Optional[dict] = None, head:
Optional[dict] = None, target_generator: Optional[dict]
= None, pretrained: Optional[str] = None,
data_preprocessor: Optional[Union[dict,
torch.nn.modules.module.Module]] = None, init_cfg:
Optional[dict] = None)

Relative patch location.

Implementation of Unsupervised Visual Representation Learning by Context Prediction.

extract_feat(inputs: List[torch.Tensor], **kwargs)→ Tuple[torch.Tensor]
Function to extract features from backbone.

Parameters inputs (List[torch.Tensor]) – The input images.

Returns Backbone outputs.

Return type Tuple[torch.Tensor]

loss(inputs: List[torch.Tensor], data_samples:
List[mmselfsup.structures.selfsup_data_sample.SelfSupDataSample], **kwargs)→ Dict[str,
torch.Tensor]

The forward function in training.

Parameters
• inputs (List[torch.Tensor]) – The input images.

• data_samples (List[SelfSupDataSample]) – All elements required during the for-
ward function.

Returns A dictionary of loss components.

Return type Dict[str, torch.Tensor]

predict(inputs: List[torch.Tensor], data_samples:
List[mmselfsup.structures.selfsup_data_sample.SelfSupDataSample], **kwargs)→
List[mmselfsup.structures.selfsup_data_sample.SelfSupDataSample]

The forward function in testing.

Parameters
• inputs (List[torch.Tensor]) – The input images.

• data_samples (List[SelfSupDataSample]) – All elements required during the for-
ward function.

Returns The prediction from model.

37.1. algorithms 191

https://arxiv.org/abs/1505.05192

MMSelfSup, Release 1.0.0rc6

Return type List[SelfSupDataSample]

class mmselfsup.models.algorithms.RotationPred(backbone: dict, neck: Optional[dict] = None, head:
Optional[dict] = None, target_generator:
Optional[dict] = None, pretrained: Optional[str] =
None, data_preprocessor: Optional[Union[dict,
torch.nn.modules.module.Module]] = None, init_cfg:
Optional[dict] = None)

Rotation prediction.

Implementation of Unsupervised Representation Learning by Predicting Image Rotations.

extract_feat(inputs: List[torch.Tensor], **kwargs)→ Tuple[torch.Tensor]
Function to extract features from backbone.

Parameters inputs (List[torch.Tensor]) – The input images.

Returns Backbone outputs.

Return type Tuple[torch.Tensor]

loss(inputs: List[torch.Tensor], data_samples:
List[mmselfsup.structures.selfsup_data_sample.SelfSupDataSample], **kwargs)→ Dict[str,
torch.Tensor]

The forward function in training.

Parameters
• inputs (List[torch.Tensor]) – The input images.

• data_samples (List[SelfSupDataSample]) – All elements required during the for-
ward function.

Returns A dictionary of loss components.

Return type Dict[str, torch.Tensor]

predict(inputs: List[torch.Tensor], data_samples:
List[mmselfsup.structures.selfsup_data_sample.SelfSupDataSample], **kwargs)→
List[mmselfsup.structures.selfsup_data_sample.SelfSupDataSample]

The forward function in testing.

Parameters
• inputs (List[torch.Tensor]) – The input images.

• data_samples (List[SelfSupDataSample]) – All elements required during the for-
ward function.

Returns The prediction from model.

Return type List[SelfSupDataSample]

class mmselfsup.models.algorithms.SimCLR(backbone: dict, neck: Optional[dict] = None, head:
Optional[dict] = None, target_generator: Optional[dict] =
None, pretrained: Optional[str] = None, data_preprocessor:
Optional[Union[dict, torch.nn.modules.module.Module]] =
None, init_cfg: Optional[dict] = None)

SimCLR.

Implementation of A Simple Framework for Contrastive Learning of Visual Representations.

extract_feat(inputs: List[torch.Tensor], **kwargs)→ Tuple[torch.Tensor]
Function to extract features from backbone.

192 Chapter 37. mmselfsup.models

https://arxiv.org/abs/1803.07728
https://arxiv.org/abs/2002.05709

MMSelfSup, Release 1.0.0rc6

Parameters inputs (List[torch.Tensor]) – The input images.

Returns Backbone outputs.

Return type Tuple[torch.Tensor]

loss(inputs: List[torch.Tensor], data_samples:
List[mmselfsup.structures.selfsup_data_sample.SelfSupDataSample], **kwargs)→ Dict[str,
torch.Tensor]

The forward function in training.

Parameters
• inputs (List[torch.Tensor]) – The input images.

• data_samples (List[SelfSupDataSample]) – All elements required during the for-
ward function.

Returns A dictionary of loss components.

Return type Dict[str, torch.Tensor]

class mmselfsup.models.algorithms.SimMIM(backbone: dict, neck: Optional[dict] = None, head:
Optional[dict] = None, target_generator: Optional[dict] =
None, pretrained: Optional[str] = None, data_preprocessor:
Optional[Union[dict, torch.nn.modules.module.Module]] =
None, init_cfg: Optional[dict] = None)

SimMIM.

Implementation of SimMIM: A Simple Framework for Masked Image Modeling.

extract_feat(inputs: List[torch.Tensor], data_samples:
List[mmselfsup.structures.selfsup_data_sample.SelfSupDataSample], **kwarg)→
torch.Tensor

The forward function to extract features.

Parameters
• inputs (List[torch.Tensor]) – The input images.

• data_samples (List[SelfSupDataSample]) – All elements required during the for-
ward function.

Returns The reconstructed images.

Return type torch.Tensor

loss(inputs: List[torch.Tensor], data_samples:
List[mmselfsup.structures.selfsup_data_sample.SelfSupDataSample], **kwargs)→ Dict[str,
torch.Tensor]

The forward function in training.

Parameters
• inputs (List[torch.Tensor]) – The input images.

• data_samples (List[SelfSupDataSample]) – All elements required during the for-
ward function.

Returns A dictionary of loss components.

Return type Dict[str, Tensor]

37.1. algorithms 193

https://arxiv.org/abs/2111.09886

MMSelfSup, Release 1.0.0rc6

reconstruct(features: torch.Tensor, data_samples:
Optional[List[mmselfsup.structures.selfsup_data_sample.SelfSupDataSample]] = None,
**kwargs)→ mmselfsup.structures.selfsup_data_sample.SelfSupDataSample

The function is for image reconstruction.

Parameters
• features (torch.Tensor) – The input images.

• data_samples (List[SelfSupDataSample]) – All elements required during the for-
ward function.

Returns The prediction from model.

Return type SelfSupDataSample

class mmselfsup.models.algorithms.SimSiam(backbone: dict, neck: Optional[dict] = None, head:
Optional[dict] = None, target_generator: Optional[dict] =
None, pretrained: Optional[str] = None, data_preprocessor:
Optional[Union[dict, torch.nn.modules.module.Module]] =
None, init_cfg: Optional[dict] = None)

SimSiam.

Implementation of Exploring Simple Siamese Representation Learning. The operation of fixing learning rate of
predictor is in engine/hooks/simsiam_hook.py.

extract_feat(inputs: List[torch.Tensor], **kwarg)→ Tuple[torch.Tensor]
Function to extract features from backbone.

Parameters inputs (List[torch.Tensor]) – The input images.

Returns Backbone outputs.

Return type Tuple[torch.Tensor]

loss(inputs: List[torch.Tensor], data_samples:
List[mmselfsup.structures.selfsup_data_sample.SelfSupDataSample], **kwargs)→ Dict[str,
torch.Tensor]

The forward function in training.

Parameters
• inputs (List[torch.Tensor]) – The input images.

• data_samples (List[SelfSupDataSample]) – All elements required during the for-
ward function.

Returns A dictionary of loss components.

Return type Dict[str, Tensor]

class mmselfsup.models.algorithms.SwAV(backbone: dict, neck: Optional[dict] = None, head:
Optional[dict] = None, target_generator: Optional[dict] = None,
pretrained: Optional[str] = None, data_preprocessor:
Optional[Union[dict, torch.nn.modules.module.Module]] = None,
init_cfg: Optional[dict] = None)

SwAV.

Implementation of Unsupervised Learning of Visual Features by Contrasting Cluster Assignments. The queue
is built in engine/hooks/swav_hook.py.

extract_feat(inputs: List[torch.Tensor], **kwargs)→ Tuple[torch.Tensor]
Function to extract features from backbone.

194 Chapter 37. mmselfsup.models

https://arxiv.org/abs/2011.10566
https://arxiv.org/abs/2006.09882

MMSelfSup, Release 1.0.0rc6

Parameters inputs (List[torch.Tensor]) – The input images.

Returns backbone outputs.

Return type Tuple[torch.Tensor]

loss(inputs: List[torch.Tensor], data_samples:
List[mmselfsup.structures.selfsup_data_sample.SelfSupDataSample], **kwargs)→ Dict[str,
torch.Tensor]

Forward computation during training.

Parameters
• inputs (List[torch.Tensor]) – The input images.

• data_samples (List[SelfSupDataSample]) – All elements required during the for-
ward function.

Returns A dictionary of loss components.

Return type Dict[str, torch.Tensor]

37.2 backbones

class mmselfsup.models.backbones.BEiTViT(arch: str = 'base', img_size: int = 224, patch_size: int = 16,
in_channels: int = 3, out_indices: int = - 1, drop_rate: float =
0, drop_path_rate: float = 0, norm_cfg: dict = {'eps': 1e-06,
'type': 'LN'}, final_norm: bool = True, avg_token: bool =
False, frozen_stages: int = - 1, output_cls_token: bool = True,
use_abs_pos_emb: bool = False, use_rel_pos_bias: bool =
False, use_shared_rel_pos_bias: bool = True,
layer_scale_init_value: int = 0.1, interpolate_mode: str =
'bicubic', patch_cfg: dict = {'padding': 0}, layer_cfgs: dict =
{}, init_cfg: Optional[Union[dict, List[dict]]] = None)

Vision Transformer for BEiT pre-training.

Rewritten version of: An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

Parameters
• arch (str | dict) – Vision Transformer architecture. If use string, choose from ‘small’,

‘base’ and ‘large’. If use dict, it should have below keys:

– embed_dims (int): The dimensions of embedding.

– num_layers (int): The number of transformer encoder layers.

– num_heads (int): The number of heads in attention modules.

– feedforward_channels (int): The hidden dimensions in feedforward modules.

Defaults to ‘base’.

• img_size (int | tuple) – The expected input image shape. Because we support dynamic
input shape, just set the argument to the most common input image shape. Defaults to 224.

• patch_size (int | tuple) – The patch size in patch embedding. Defaults to 16.

• in_channels (int) – The num of input channels. Defaults to 3.

• out_indices (Sequence | int) – Output from which stages. Defaults to -1, means the
last stage.

37.2. backbones 195

https://arxiv.org/abs/2010.11929

MMSelfSup, Release 1.0.0rc6

• drop_rate (float) – Probability of an element to be zeroed. Defaults to 0.

• drop_path_rate (float) – stochastic depth rate. Defaults to 0.

• qkv_bias (bool) – Whether to add bias for qkv in attention modules. Defaults to True.

• norm_cfg (dict) – Config dict for normalization layer. Defaults to dict(type='LN').

• final_norm (bool) – Whether to add a additional layer to normalize final feature map.
Defaults to True.

• with_cls_token (bool) – Whether concatenating class token into image tokens as trans-
former input. Defaults to True.

• avg_token (bool) – Whether or not to use the mean patch token for classification. If True,
the model will only take the average of all patch tokens. Defaults to False.

• frozen_stages (int) – Stages to be frozen (stop grad and set eval mode). -1 means not
freezing any parameters. Defaults to -1.

• output_cls_token (bool) – Whether output the cls_token. If set True, with_cls_token
must be True. Defaults to True.

• use_abs_pos_emb (bool) – Whether or not use absolute position embedding. Defaults to
False.

• use_rel_pos_bias (bool) – Whether or not use relative position bias. Defaults to False.

• use_shared_rel_pos_bias (bool) – Whether or not use shared relative position bias.
Defaults to True.

• layer_scale_init_value (float) – The initialization value for the learnable scaling of
attention and FFN. Defaults to 0.1.

• interpolate_mode (str) – Select the interpolate mode for position embeding vector re-
size. Defaults to “bicubic”.

• patch_cfg (dict) – Configs of patch embeding. Defaults to an empty dict.

• layer_cfgs (Sequence | dict) – Configs of each transformer layer in encoder. Defaults
to an empty dict.

• init_cfg (dict, optional) – Initialization config dict. Defaults to None.

forward(x: torch.Tensor, mask: torch.Tensor)→ Tuple[torch.Tensor]
The BEiT style forward function.

Parameters
• x (torch.Tensor) – Input images, which is of shape (B x C x H x W).

• mask (torch.Tensor) – Mask for input, which is of shape (B x patch_resolution[0] x
patch_resolution[1]).

Returns Hidden features.

Return type Tuple[torch.Tensor]

init_weights()→ None
Initialize position embedding, patch embedding and cls token.

rescale_init_weight()→ None
Rescale the initialized weights.

196 Chapter 37. mmselfsup.models

MMSelfSup, Release 1.0.0rc6

class mmselfsup.models.backbones.CAEViT(arch: str = 'b', img_size: int = 224, patch_size: int = 16,
out_indices: int = - 1, drop_rate: float = 0, drop_path_rate:
float = 0, qkv_bias: bool = True, norm_cfg: dict = {'eps': 1e-06,
'type': 'LN'}, final_norm: bool = True, output_cls_token: bool =
True, interpolate_mode: str = 'bicubic', init_values:
Optional[float] = None, patch_cfg: dict = {}, layer_cfgs: dict =
{}, init_cfg: Optional[dict] = None)

Vision Transformer for CAE pre-training.

Rewritten version of: An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

Parameters
• arch (str | dict) – Vision Transformer architecture. Default: ‘b’

• img_size (int | tuple) – Input image size

• patch_size (int | tuple) – The patch size

• out_indices (Sequence | int) – Output from which stages. Defaults to -1, means the
last stage.

• drop_rate (float) – Probability of an element to be zeroed. Defaults to 0.

• drop_path_rate (float) – stochastic depth rate. Defaults to 0.

• norm_cfg (dict) – Config dict for normalization layer. Defaults to dict(type='LN').

• final_norm (bool) – Whether to add a additional layer to normalize final feature map.
Defaults to True.

• output_cls_token (bool) – Whether output the cls_token. If set True, with_cls_token
must be True. Defaults to True.

• interpolate_mode (str) – Select the interpolate mode for position embeding vector re-
size. Defaults to “bicubic”.

• init_values (float, optional) – The init value of gamma in TransformerEncoder-
Layer.

• patch_cfg (dict) – Configs of patch embeding. Defaults to an empty dict.

• layer_cfgs (Sequence | dict) – Configs of each transformer layer in encoder. Defaults
to an empty dict.

• init_cfg (dict, optional) – Initialization config dict. Defaults to None.

forward(img: torch.Tensor, mask: torch.Tensor)→ torch.Tensor
Generate features for masked images.

This function generates mask images and get the hidden features for visible patches.

Parameters
• x (torch.Tensor) – Input images, which is of shape B x C x H x W.

• mask (torch.Tensor) – Mask for input, which is of shape B x L.

Returns hidden features.

Return type torch.Tensor

init_weights()→ None
Initialize position embedding, patch embedding and cls token.

37.2. backbones 197

https://arxiv.org/abs/2010.11929

MMSelfSup, Release 1.0.0rc6

class mmselfsup.models.backbones.MAEViT(arch: Union[str, dict] = 'b', img_size: int = 224, patch_size: int
= 16, out_indices: Union[Sequence, int] = - 1, drop_rate: float
= 0, drop_path_rate: float = 0, norm_cfg: dict = {'eps': 1e-06,
'type': 'LN'}, final_norm: bool = True, output_cls_token: bool =
True, interpolate_mode: str = 'bicubic', patch_cfg: dict = {},
layer_cfgs: dict = {}, mask_ratio: float = 0.75, init_cfg:
Optional[Union[dict, List[dict]]] = None)

Vision Transformer for MAE pre-training.

A PyTorch implement of: An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. This
module implements the patch masking in MAE and initialize the position embedding with sine-cosine position
embedding.

Parameters
• arch (str | dict) – Vision Transformer architecture Default: ‘b’

• img_size (int | tuple) – Input image size

• patch_size (int | tuple) – The patch size

• out_indices (Sequence | int) – Output from which stages. Defaults to -1, means the
last stage.

• drop_rate (float) – Probability of an element to be zeroed. Defaults to 0.

• drop_path_rate (float) – stochastic depth rate. Defaults to 0.

• norm_cfg (dict) – Config dict for normalization layer. Defaults to dict(type='LN').

• final_norm (bool) – Whether to add a additional layer to normalize final feature map.
Defaults to True.

• output_cls_token (bool) – Whether output the cls_token. If set True, with_cls_token
must be True. Defaults to True.

• interpolate_mode (str) – Select the interpolate mode for position embeding vector re-
size. Defaults to “bicubic”.

• patch_cfg (dict) – Configs of patch embeding. Defaults to an empty dict.

• layer_cfgs (Sequence | dict) – Configs of each transformer layer in encoder. Defaults
to an empty dict.

• mask_ratio (bool) – The ratio of total number of patches to be masked. Defaults to 0.75.

• init_cfg (Union[List[dict], dict], optional) – Initialization config dict. De-
faults to None.

forward(x: torch.Tensor)→ Tuple[torch.Tensor, torch.Tensor, torch.Tensor]
Generate features for masked images.

This function generates mask and masks some patches randomly and get the hidden features for visible
patches.

Parameters x (torch.Tensor) – Input images, which is of shape B x C x H x W.

Returns
Hidden features, mask and the ids to restore original image.

• x (torch.Tensor): hidden features, which is of shape B x (L * mask_ratio) x C.

• mask (torch.Tensor): mask used to mask image.

• ids_restore (torch.Tensor): ids to restore original image.

198 Chapter 37. mmselfsup.models

https://arxiv.org/abs/2010.11929

MMSelfSup, Release 1.0.0rc6

Return type Tuple[torch.Tensor, torch.Tensor, torch.Tensor]

init_weights()→ None
Initialize position embedding, patch embedding and cls token.

random_masking(x: torch.Tensor, mask_ratio: float = 0.75)→ Tuple[torch.Tensor, torch.Tensor,
torch.Tensor]

Generate the mask for MAE Pre-training.

Parameters
• x (torch.Tensor) – Image with data augmentation applied, which is of shape B x L x C.

• mask_ratio (float) – The mask ratio of total patches. Defaults to 0.75.

Returns
masked image, mask and the ids to restore original image.

• x_masked (torch.Tensor): masked image.

• mask (torch.Tensor): mask used to mask image.

• ids_restore (torch.Tensor): ids to restore original image.

Return type Tuple[torch.Tensor, torch.Tensor, torch.Tensor]

class mmselfsup.models.backbones.MILANViT(arch: Union[str, dict] = 'b', img_size: int = 224, patch_size:
int = 16, out_indices: Union[Sequence, int] = - 1, drop_rate:
float = 0, drop_path_rate: float = 0, norm_cfg: dict = {'eps':
1e-06, 'type': 'LN'}, final_norm: bool = True,
output_cls_token: bool = True, interpolate_mode: str =
'bicubic', patch_cfg: dict = {}, layer_cfgs: dict = {},
mask_ratio: float = 0.75, init_cfg: Optional[Union[dict,
List[dict]]] = None)

MILANViT.

Implementation of the encoder for MILAN: Masked Image Pretraining on Language Assisted Representation.
This module inherits from MAEViT and only overrides the forward function and replace random masking with
attention masking.

attention_masking(x: torch.Tensor, mask_ratio: float, importance: torch.Tensor)→ Tuple[torch.Tensor,
torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]

Generate attention mask for MILAN.

This is what is different from MAEViT, which uses random masking. Attention masking generates attention
mask for MILAN, according to importance. The higher the importance, the more likely the patch is kept.

Parameters
• x (torch.Tensor) – Input images, which is of shape B x L x C.

• mask_ratio (float) – The ratio of patches to be masked.

• importance (torch.Tensor) – Importance of each patch, which is of shape B x L.

Returns masked image, mask, the ids to restore original image, ids of the shuffled patches, ids
of the kept patches, ids of the removed patches.

Return type Tuple[torch.Tensor, . . .]

forward(x: torch.Tensor, importance: torch.Tensor)→ Tuple[torch.Tensor, torch.Tensor, torch.Tensor]
Generate features for masked images.

37.2. backbones 199

https://arxiv.org/abs/2208.06049

MMSelfSup, Release 1.0.0rc6

This function generates mask and masks some patches randomly and get the hidden features for visible
patches. The mask is generated by importance. The higher the importance, the more likely the patch is
kept. The importance is calculated by CLIP. The higher the CLIP score, the more likely the patch is kept.
The CLIP score is calculated by by cross attention between the class token and all other tokens from the
last layer.

Parameters
• x (torch.Tensor) – Input images, which is of shape B x C x H x W.

• importance (torch.Tensor) – Importance of each patch, which is of shape B x L.

Returns
masked image, the ids to restore original image, ids of the kept patches, ids of the removed
patches.

• x (torch.Tensor): hidden features, which is of shape B x (L * mask_ratio) x C.

• ids_restore (torch.Tensor): ids to restore original image.

• ids_keep (torch.Tensor): ids of the kept patches.

• ids_dump (torch.Tensor): ids of the removed patches.

Return type Tuple[torch.Tensor, . . .]

class mmselfsup.models.backbones.MaskFeatViT(arch: Union[str, dict] = 'b', img_size: int = 224,
patch_size: int = 16, out_indices: Union[Sequence, int] =
- 1, drop_rate: float = 0, drop_path_rate: float = 0,
norm_cfg: dict = {'eps': 1e-06, 'type': 'LN'}, final_norm:
bool = True, output_cls_token: bool = True,
interpolate_mode: str = 'bicubic', patch_cfg: dict = {},
layer_cfgs: dict = {}, init_cfg: Optional[Union[dict,
List[dict]]] = None)

Vision Transformer for MaskFeat pre-training.

A PyTorch implement of: Masked Feature Prediction for Self-Supervised Visual Pre-Training.

Parameters
• arch (str | dict) – Vision Transformer architecture Default: ‘b’

• img_size (int | tuple) – Input image size

• patch_size (int | tuple) – The patch size

• out_indices (Sequence | int) – Output from which stages. Defaults to -1, means the
last stage.

• drop_rate (float) – Probability of an element to be zeroed. Defaults to 0.

• drop_path_rate (float) – stochastic depth rate. Defaults to 0.

• norm_cfg (dict) – Config dict for normalization layer. Defaults to dict(type='LN').

• final_norm (bool) – Whether to add a additional layer to normalize final feature map.
Defaults to True.

• output_cls_token (bool) – Whether output the cls_token. If set True, with_cls_token
must be True. Defaults to True.

• interpolate_mode (str) – Select the interpolate mode for position embeding vector re-
size. Defaults to “bicubic”.

• patch_cfg (dict) – Configs of patch embeding. Defaults to an empty dict.

200 Chapter 37. mmselfsup.models

https://arxiv.org/abs/2112.09133

MMSelfSup, Release 1.0.0rc6

• layer_cfgs (Sequence | dict) – Configs of each transformer layer in encoder. Defaults
to an empty dict.

• init_cfg (dict, optional) – Initialization config dict. Defaults to None.

forward(x: torch.Tensor, mask: torch.Tensor)→ torch.Tensor
Generate features for masked images.

Parameters
• x (torch.Tensor) – Input images.

• mask (torch.Tensor) – Input masks.

Returns Features with cls_tokens.

Return type torch.Tensor

init_weights()→ None
Initialize position embedding, mask token and cls token.

class mmselfsup.models.backbones.MixMIMTransformerPretrain(arch: Union[str, dict] = 'base',
mlp_ratio: float = 4, img_size: int =
224, patch_size: int = 4, in_channels:
int = 3, window_size: List = [14, 14,
14, 7], qkv_bias: bool = True,
patch_cfg: dict = {}, norm_cfg: dict =
{'type': 'LN'}, drop_rate: float = 0.0,
drop_path_rate: float = 0.0,
attn_drop_rate: float = 0.0,
use_checkpoint: bool = False,
range_mask_ratio: float = 0.0, init_cfg:
Optional[dict] = None)

MixMIM backbone during pretraining.

A PyTorch implement of : ` MixMIM: Mixed and Masked Image Modeling for Efficient Visual Representation
Learning <https://arxiv.org/abs/2205.13137>`_

Parameters
• arch (str | dict) – MixMIM architecture. If use string, choose from ‘base’,’large’ and

‘huge’. If use dict, it should have below keys:

– embed_dims (int): The dimensions of embedding.

– depths (int): The number of transformer encoder layers.

– num_heads (int): The number of heads in attention modules.

Defaults to ‘base’.

• mlp_ratio (int) – The mlp ratio in FFN. Defaults to 4.

• img_size (int | tuple) – The expected input image shape. Because we support dynamic
input shape, just set the argument to mlp_ratio the most common input image shape. Defaults
to 224.

• patch_size (int | tuple) – The patch size in patch embedding. Defaults to 16.

• in_channels (int) – The num of input channels. Defaults to 3.

• window_size (list) – The height and width of the window.

• qkv_bias (bool) – Whether to add bias for qkv in attention modules. Defaults to True.

37.2. backbones 201

https://arxiv.org/abs/2205.13137

MMSelfSup, Release 1.0.0rc6

• patch_cfg (dict) – Extra config dict for patch embedding. Defaults to an empty dict.

• norm_cfg (dict) – Config dict for normalization layer. Defaults to dict(type='LN').

• drop_rate (float) – Probability of an element to be zeroed. Defaults to 0.

• drop_path_rate (float) – Stochastic depth rate. Defaults to 0.

• attn_drop_rate (float) – Attention drop rate. Defaults to 0.

• use_checkpoint (bool) – Whether use the checkpoint to

• GPU memory cost (reduce) –

• range_mask_ratio (float) – The range of mask ratio. Defaults to 0.

• init_cfg (dict, optional) – Initialization config dict. Defaults to None.

forward(x: torch.Tensor, mask_ratio=0.5)
Generate features for masked images.

This function generates mask and masks some patches randomly and get the hidden features for visible
patches.

Parameters x (torch.Tensor) – Input images, which is of shape B x C x H x W.

Returns
• x (torch.Tensor): hidden features, which is of shape B x L x C.

• mask_s4 (torch.Tensor): the mask tensor for the last layer.

Return type Tuple[torch.Tensor, torch.Tensor]

init_weights()
Initialize position embedding, patch embedding.

random_masking(x: torch.Tensor, mask_ratio: float = 0.5)
Generate the mask for MixMIM Pretraining.

Parameters
• x (torch.Tensor) – Image with data augmentation applied, which is of shape B x L x C.

• mask_ratio (float) – The mask ratio of total patches. Defaults to 0.5.

Returns
• mask_s1 (torch.Tensor): mask with stride of self.encoder_stride // 8.

• mask_s2 (torch.Tensor): mask with stride of self.encoder_stride // 4.

• mask_s3 (torch.Tensor): mask with stride of self.encoder_stride // 2.

• mask (torch.Tensor): mask with stride of self.encoder_stride.

Return type Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]

class mmselfsup.models.backbones.MoCoV3ViT(stop_grad_conv1: bool = False, frozen_stages: int = - 1,
norm_eval: bool = False, init_cfg: Optional[Union[dict,
List[dict]]] = None, **kwargs)

Vision Transformer.

A pytorch implement of: An Images is Worth 16x16 Words: Transformers for Image Recognition at Scale.

Part of the code is modified from: https://github.com/facebookresearch/moco-v3/blob/main/vits.py.

Parameters

202 Chapter 37. mmselfsup.models

https://arxiv.org/abs/2010.11929
https://github.com/facebookresearch/moco-v3/blob/main/vits.py

MMSelfSup, Release 1.0.0rc6

• stop_grad_conv1 (bool) – whether to stop the gradient of convolution layer in PatchEm-
bed. Defaults to False.

• frozen_stages (int) – Stages to be frozen (stop grad and set eval mode). -1 means not
freezing any parameters. Defaults to -1.

• norm_eval (bool) – Whether to set norm layers to eval mode, namely, freeze running stats
(mean and var). Note: Effect on Batch Norm and its variants only. Defaults to False.

• init_cfg (dict or list[dict], optional) – Initialization config dict. Defaults to
None.

init_weights()→ None
Initialize position embedding, patch embedding, qkv layers and cls token.

train(mode: bool = True)→ None
Set module status before forward computation.

Parameters mode (bool) – Whether it is train_mode or test_mode

class mmselfsup.models.backbones.ResNeXt(depth: int, groups: int = 32, width_per_group: int = 4,
**kwargs)

ResNeXt backbone.

Please refer to the paper for details.

As the behavior of forward function in MMSelfSup is different from MMCls, we register our own ResNeXt,
inheriting from mmselfsup.model.backbone.ResNet.

Parameters
• depth (int) – Network depth, from {50, 101, 152}.

• groups (int) – Groups of conv2 in Bottleneck. Defaults to 32.

• width_per_group (int) – Width per group of conv2 in Bottleneck. Defaults to 4.

• in_channels (int) – Number of input image channels. Defaults to 3.

• stem_channels (int) – Output channels of the stem layer. Defaults to 64.

• num_stages (int) – Stages of the network. Defaults to 4.

• strides (Sequence[int]) – Strides of the first block of each stage. Defaults to (1, 2,
2, 2).

• dilations (Sequence[int]) – Dilation of each stage. Defaults to (1, 1, 1, 1).

• out_indices (Sequence[int]) – Output from which stages. If only one stage is specified,
a single tensor (feature map) is returned, otherwise multiple stages are specified, a tuple of
tensors will be returned. Defaults to (3,).

• style (str) – pytorch or caffe. If set to “pytorch”, the stride-two layer is the 3x3 conv layer,
otherwise the stride-two layer is the first 1x1 conv layer.

• deep_stem (bool) – Replace 7x7 conv in input stem with 3 3x3 conv. Defaults to False.

• avg_down (bool) – Use AvgPool instead of stride conv when downsampling in the bottle-
neck. Defaults to False.

• frozen_stages (int) – Stages to be frozen (stop grad and set eval mode). -1 means not
freezing any parameters. Defaults to -1.

• conv_cfg (dict | None) – The config dict for conv layers. Defaults to None.

• norm_cfg (dict) – The config dict for norm layers.

37.2. backbones 203

https://arxiv.org/abs/1611.05431

MMSelfSup, Release 1.0.0rc6

• norm_eval (bool) – Whether to set norm layers to eval mode, namely, freeze running stats
(mean and var). Note: Effect on Batch Norm and its variants only. Defaults to False.

• with_cp (bool) – Use checkpoint or not. Using checkpoint will save some memory while
slowing down the training speed. Defaults to False.

• zero_init_residual (bool) – Whether to use zero init for last norm layer in resblocks to
let them behave as identity. Defaults to False.

Example

>>> from mmselfsup.models import ResNeXt
>>> import torch
>>> self = ResNeXt(depth=50)
>>> self.eval()
>>> inputs = torch.rand(1, 3, 32, 32)
>>> level_outputs = self.forward(inputs)
>>> for level_out in level_outputs:
... print(tuple(level_out.shape))
(1, 256, 8, 8)
(1, 512, 4, 4)
(1, 1024, 2, 2)
(1, 2048, 1, 1)

make_res_layer(**kwargs)→ torch.nn.modules.module.Module
Redefine the function for ResNeXt related args.

class mmselfsup.models.backbones.ResNet(depth: int, in_channels: int = 3, stem_channels: int = 64,
base_channels: int = 64, expansion: Optional[int] = None,
num_stages: int = 4, strides: Tuple[int] = (1, 2, 2, 2), dilations:
Tuple[int] = (1, 1, 1, 1), out_indices: Tuple[int] = (4), style: str
= 'pytorch', deep_stem: bool = False, avg_down: bool = False,
frozen_stages: int = - 1, conv_cfg: Optional[dict] = None,
norm_cfg: Optional[dict] = {'requires_grad': True, 'type':
'BN'}, norm_eval: bool = False, with_cp: bool = False,
zero_init_residual: bool = False, init_cfg: Optional[dict] =
[{'type': 'Kaiming', 'layer': ['Conv2d']}, {'type': 'Constant', 'val':
1, 'layer': ['_BatchNorm', 'GroupNorm']}], drop_path_rate:
float = 0.0, **kwargs)

ResNet backbone.

Please refer to the paper for details.

Parameters
• depth (int) – Network depth, from {18, 34, 50, 101, 152}.

• in_channels (int) – Number of input image channels. Defaults to 3.

• stem_channels (int) – Output channels of the stem layer. Defaults to 64.

• base_channels (int) – Middle channels of the first stage. Defaults to 64.

• num_stages (int) – Stages of the network. Defaults to 4.

• strides (Sequence[int]) – Strides of the first block of each stage. Defaults to (1, 2,
2, 2).

• dilations (Sequence[int]) – Dilation of each stage. Defaults to (1, 1, 1, 1).

204 Chapter 37. mmselfsup.models

https://arxiv.org/abs/1512.03385

MMSelfSup, Release 1.0.0rc6

• out_indices (Sequence[int]) – Output from which stages. Defaults to (4,).

• style (str) – pytorch or caffe. If set to “pytorch”, the stride-two layer is the 3x3 conv layer,
otherwise the stride-two layer is the first 1x1 conv layer.

• deep_stem (bool) – Replace 7x7 conv in input stem with 3 3x3 conv. Defaults to False.

• avg_down (bool) – Use AvgPool instead of stride conv when downsampling in the bottle-
neck. Defaults to False.

• frozen_stages (int) – Stages to be frozen (stop grad and set eval mode). -1 means not
freezing any parameters. Defaults to -1.

• conv_cfg (dict | None) – The config dict for conv layers. Defaults to None.

• norm_cfg (dict) – The config dict for norm layers.

• norm_eval (bool) – Whether to set norm layers to eval mode, namely, freeze running stats
(mean and var). Note: Effect on Batch Norm and its variants only. Defaults to False.

• with_cp (bool) – Use checkpoint or not. Using checkpoint will save some memory while
slowing down the training speed. Defaults to False.

• zero_init_residual (bool) – Whether to use zero init for last norm layer in resblocks to
let them behave as identity. Defaults to False.

• of the path to be zeroed. Defaults to 0.1 (Probability) –

Example

>>> from mmselfsup.models import ResNet
>>> import torch
>>> self = ResNet(depth=18)
>>> self.eval()
>>> inputs = torch.rand(1, 3, 32, 32)
>>> level_outputs = self.forward(inputs)
>>> for level_out in level_outputs:
... print(tuple(level_out.shape))
(1, 64, 8, 8)
(1, 128, 4, 4)
(1, 256, 2, 2)
(1, 512, 1, 1)

forward(x: torch.Tensor)→ Tuple[torch.Tensor]
Forward function.

As the behavior of forward function in MMSelfSup is different from MMCls, we rewrite the forward func-
tion. MMCls does not output the feature map from the ‘stem’ layer, which will be used for downstream
evaluation.

class mmselfsup.models.backbones.ResNetSobel(**kwargs)
ResNet with Sobel layer.

This variant is used in clustering-based methods like DeepCluster to avoid color shortcut.

forward(x: torch.Tensor)→ Tuple[torch.Tensor]
Forward function.

class mmselfsup.models.backbones.ResNetV1d(**kwargs)
ResNetV1d variant described in Bag of Tricks.

37.2. backbones 205

https://arxiv.org/pdf/1812.01187.pdf

MMSelfSup, Release 1.0.0rc6

Compared with default ResNet(ResNetV1b), ResNetV1d replaces the 7x7 conv in the input stem with three 3x3
convs. And in the downsampling block, a 2x2 avg_pool with stride 2 is added before conv, whose stride is
changed to 1.

class mmselfsup.models.backbones.SimMIMSwinTransformer(arch: Union[str, dict] = 'T', img_size:
Union[Tuple[int, int], int] = 224,
in_channels: int = 3, drop_rate: float = 0.0,
drop_path_rate: float = 0.1, out_indices:
tuple = (3), use_abs_pos_embed: bool =
False, with_cp: bool = False, frozen_stages:
bool = - 1, norm_eval: bool = False,
norm_cfg: dict = {'type': 'LN'}, stage_cfgs:
Union[Sequence, dict] = {}, patch_cfg: dict
= {}, pad_small_map: bool = False,
init_cfg: Optional[dict] = None)

Swin Transformer for SimMIM.

Parameters
• Args –

• arch (str | dict) – Swin Transformer architecture Defaults to ‘T’.

• img_size (int | tuple) – The size of input image. Defaults to 224.

• in_channels (int) – The num of input channels. Defaults to 3.

• drop_rate (float) – Dropout rate after embedding. Defaults to 0.

• drop_path_rate (float) – Stochastic depth rate. Defaults to 0.1.

• out_indices (tuple) – Layers to be outputted. Defaults to (3,).

• use_abs_pos_embed (bool) – If True, add absolute position embedding to the patch em-
bedding. Defaults to False.

• with_cp (bool) – Use checkpoint or not. Using checkpoint will save some memory while
slowing down the training speed. Defaults to False.

• frozen_stages (int) – Stages to be frozen (stop grad and set eval mode). -1 means not
freezing any parameters. Defaults to -1.

• norm_eval (bool) – Whether to set norm layers to eval mode, namely, freeze running stats
(mean and var). Note: Effect on Batch Norm and its variants only. Defaults to False.

• norm_cfg (dict) – Config dict for normalization layer at end of backone. Defaults to
dict(type=’LN’)

• stage_cfgs (Sequence | dict) – Extra config dict for each stage. Defaults to empty dict.

• patch_cfg (dict) – Extra config dict for patch embedding. Defaults to empty dict.

• pad_small_map (bool) – If True, pad the small feature map to the window size, which is
common used in detection and segmentation. If False, avoid shifting window and shrink the
window size to the size of feature map, which is common used in classification. Defaults to
False.

• init_cfg (dict, optional) – The Config for initialization. Defaults to None.

forward(x: torch.Tensor, mask: torch.Tensor)→ Sequence[torch.Tensor]
Generate features for masked images.

This function generates mask images and get the hidden features for them.

206 Chapter 37. mmselfsup.models

MMSelfSup, Release 1.0.0rc6

Parameters
• x (torch.Tensor) – Input images.

• mask (torch.Tensor) – Masks used to construct masked images.

Returns A tuple containing features from multi-stages.

Return type tuple

init_weights()→ None
Initialize weights.

37.3 necks

class mmselfsup.models.necks.AvgPool2dNeck(output_size: int = 1)
The average pooling 2d neck.

forward(x: List[torch.Tensor])→ List[torch.Tensor]
Forward function.

class mmselfsup.models.necks.BEiTV2Neck(num_layers: int = 2, early_layers: int = 9, backbone_arch: str =
'base', drop_rate: float = 0.0, drop_path_rate: float = 0.0,
layer_scale_init_value: float = 0.1, use_rel_pos_bias: bool =
False, norm_cfg: dict = {'eps': 1e-06, 'type': 'LN'}, init_cfg:
Optional[Union[dict, List[dict]]] = {'bias': 0, 'layer': 'Linear',
'std': 0.02, 'type': 'TruncNormal'})

Neck for BEiTV2 Pre-training.

This module construct the decoder for the final prediction.

Parameters
• num_layers (int) – Number of encoder layers of neck. Defaults to 2.

• early_layers (int) – The layer index of the early output from the backbone. Defaults to
9.

• backbone_arch (str) – Vision Transformer architecture. Defaults to base.

• drop_rate (float) – Probability of an element to be zeroed. Defaults to 0.

• drop_path_rate (float) – stochastic depth rate. Defaults to 0.

• layer_scale_init_value (float) – The initialization value for the learnable scaling of
attention and FFN. Defaults to 0.1.

• use_rel_pos_bias (bool) – Whether to use unique relative position bias, if False, use
shared relative position bias defined in backbone.

• norm_cfg (dict) – Config dict for normalization layer. Defaults to dict(type='LN').

• init_cfg (dict, optional) – Initialization config dict. Defaults to None.

forward(inputs: Tuple[torch.Tensor], rel_pos_bias: torch.Tensor, **kwargs)→ Tuple[torch.Tensor,
torch.Tensor]

Get the latent prediction and final prediction.

Parameters
• x (Tuple[torch.Tensor]) – Features of tokens.

• rel_pos_bias (torch.Tensor) – Shared relative position bias table.

37.3. necks 207

MMSelfSup, Release 1.0.0rc6

Returns
• x: The final layer features from backbone, which are normed in BEiTV2Neck.

• x_cls_pt: The early state features from backbone, which are consist of final layer
cls_token and early state patch_tokens from backbone and sent to PatchAggregation layers
in the neck.

Return type Tuple[torch.Tensor, torch.Tensor]

rescale_patch_aggregation_init_weight()
Rescale the initialized weights.

class mmselfsup.models.necks.CAENeck(patch_size: int = 16, num_classes: int = 8192, embed_dims: int =
768, regressor_depth: int = 6, decoder_depth: int = 8, num_heads:
int = 12, mlp_ratio: int = 4, qkv_bias: bool = True, qk_scale:
Optional[float] = None, drop_rate: float = 0.0, attn_drop_rate: float
= 0.0, drop_path_rate: float = 0.0, norm_cfg: dict = {'eps': 1e-06,
'type': 'LN'}, init_values: Optional[float] = None,
mask_tokens_num: int = 75, init_cfg: Optional[dict] = None)

Neck for CAE Pre-training.

This module construct the latent prediction regressor and the decoder for the latent prediction and final prediction.

Parameters
• patch_size (int) – The patch size of each token. Defaults to 16.

• num_classes (int) – The number of classes for final prediction. Defaults to 8192.

• embed_dims (int) – The embed dims of latent feature in regressor and decoder. Defaults
to 768.

• regressor_depth (int) – The number of regressor blocks. Defaults to 6.

• decoder_depth (int) – The number of decoder blocks. Defaults to 8.

• num_heads (int) – The number of head in multi-head attention. Defaults to 12.

• mlp_ratio (int) – The expand ratio of latent features in MLP. defaults to 4.

• qkv_bias (bool) – Whether or not to use qkv bias. Defaults to True.

• qk_scale (float, optional) – The scale applied to the results of qk. Defaults to None.

• drop_rate (float) – The dropout rate. Defaults to 0.

• attn_drop_rate (float) – The dropout rate in attention block. Defaults to 0.

• norm_cfg (dict) – The config of normalization layer. Defaults to dict(type=’LN’, eps=1e-
6).

• init_values (float, optional) – The init value of gamma. Defaults to None.

• mask_tokens_num (int) – The number of mask tokens. Defaults to 75.

• init_cfg (dict, optional) – Initialization config dict. Defaults to None.

forward(x_unmasked: torch.Tensor, pos_embed_masked: torch.Tensor, pos_embed_unmasked:
torch.Tensor)→ Tuple[torch.Tensor, torch.Tensor]

Get the latent prediction and final prediction.

Parameters
• x_unmasked (torch.Tensor) – Features of unmasked tokens.

• pos_embed_masked (torch.Tensor) – Position embedding of masked tokens.

208 Chapter 37. mmselfsup.models

MMSelfSup, Release 1.0.0rc6

• pos_embed_unmasked (torch.Tensor) – Position embedding of unmasked tokens.

Returns
Final prediction and latent prediction.

Return type Tuple[torch.Tensor, torch.Tensor]

init_weights()→ None
Initialization.

class mmselfsup.models.necks.ClsBatchNormNeck(input_features: int, affine: bool = False, eps: float =
1e-06, init_cfg: Optional[Union[dict, List[dict]]] =
None)

Normalize cls token across batch before head.

This module is proposed by MAE, when running linear probing.

Parameters
• input_features (int) – The dimension of features.

• affine (bool) – a boolean value that when set to True, this module has learnable affine
parameters. Defaults to False.

• eps (float) – a value added to the denominator for numerical stability. Defaults to 1e-6.

• init_cfg (Dict or List[Dict], optional) – Config dict for weight initialization.
Defaults to None.

forward(inputs: Tuple[List[torch.Tensor]])→ Tuple[List[torch.Tensor]]
The forward function.

class mmselfsup.models.necks.DenseCLNeck(in_channels: int, hid_channels: int, out_channels: int,
num_grid: Optional[int] = None, init_cfg:
Optional[Union[dict, List[dict]]] = None)

The non-linear neck of DenseCL.

Single and dense neck in parallel: fc-relu-fc, conv-relu-conv. Borrowed from the authors’ code.

Parameters
• in_channels (int) – Number of input channels.

• hid_channels (int) – Number of hidden channels.

• out_channels (int) – Number of output channels.

• num_grid (int) – The grid size of dense features. Defaults to None.

• init_cfg (dict or list[dict], optional) – Initialization config dict. Defaults to
None.

forward(x: List[torch.Tensor])→ List[torch.Tensor]
Forward function of neck.

Parameters x (List[torch.Tensor]) – feature map of backbone.

Returns
The global feature vectors and dense feature vectors. - avgpooled_x: Global feature vectors.

- x: Dense feature vectors. - avgpooled_x2: Dense feature vectors for queue.

Return type List[torch.Tensor, torch.Tensor, torch.Tensor]

37.3. necks 209

https://github.com/WXinlong/DenseCL

MMSelfSup, Release 1.0.0rc6

class mmselfsup.models.necks.LinearNeck(in_channels: int, out_channels: int, with_avg_pool: bool =
True, init_cfg: Optional[Union[dict, List[dict]]] = None)

The linear neck: fc only.

Parameters
• in_channels (int) – Number of input channels.

• out_channels (int) – Number of output channels.

• with_avg_pool (bool) – Whether to apply the global average pooling after backbone. De-
faults to True.

• init_cfg (dict or list[dict], optional) – Initialization config dict. Defaults to
None.

forward(x: Tuple[torch.Tensor])→ List[torch.Tensor]
Forward function.

Parameters x (List[torch.Tensor]) – The feature map of backbone.

Returns The output features.

Return type List[torch.Tensor]

class mmselfsup.models.necks.MAEPretrainDecoder(num_patches: int = 196, patch_size: int = 16,
in_chans: int = 3, embed_dim: int = 1024,
decoder_embed_dim: int = 512, decoder_depth: int =
8, decoder_num_heads: int = 16, mlp_ratio: int = 4,
norm_cfg: dict = {'eps': 1e-06, 'type': 'LN'},
predict_feature_dim: Optional[float] = None,
init_cfg: Optional[Union[dict, List[dict]]] = None)

Decoder for MAE Pre-training.

Some of the code is borrowed from https://github.com/facebookresearch/mae. # noqa

Parameters
• num_patches (int) – The number of total patches. Defaults to 196.

• patch_size (int) – Image patch size. Defaults to 16.

• in_chans (int) – The channel of input image. Defaults to 3.

• embed_dim (int) – Encoder’s embedding dimension. Defaults to 1024.

• decoder_embed_dim (int) – Decoder’s embedding dimension. Defaults to 512.

• decoder_depth (int) – The depth of decoder. Defaults to 8.

• decoder_num_heads (int) – Number of attention heads of decoder. Defaults to 16.

• mlp_ratio (int) – Ratio of mlp hidden dim to decoder’s embedding dim. Defaults to 4.

• norm_cfg (dict) – Normalization layer. Defaults to LayerNorm.

• init_cfg (Union[List[dict], dict], optional) – Initialization config dict. De-
faults to None.

210 Chapter 37. mmselfsup.models

MMSelfSup, Release 1.0.0rc6

Example

>>> from mmselfsup.models import MAEPretrainDecoder
>>> import torch
>>> self = MAEPretrainDecoder()
>>> self.eval()
>>> inputs = torch.rand(1, 50, 1024)
>>> ids_restore = torch.arange(0, 196).unsqueeze(0)
>>> level_outputs = self.forward(inputs, ids_restore)
>>> print(tuple(level_outputs.shape))
(1, 196, 768)

property decoder_norm
The normalization layer of decoder.

forward(x: torch.Tensor, ids_restore: torch.Tensor)→ torch.Tensor
The forward function.

The process computes the visible patches’ features vectors and the mask tokens to output feature vectors,
which will be used for reconstruction.

Parameters
• x (torch.Tensor) – hidden features, which is of shape B x (L * mask_ratio) x C.

• ids_restore (torch.Tensor) – ids to restore original image.

Returns
The reconstructed feature vectors, which is of shape B x (num_patches) x C.

Return type x (torch.Tensor)

init_weights()→ None
Initialize position embedding and mask token of MAE decoder.

class mmselfsup.models.necks.MILANPretrainDecoder(num_patches: int = 196, patch_size: int = 16,
in_chans: int = 3, embed_dim: int = 1024,
decoder_embed_dim: int = 512, decoder_depth:
int = 8, decoder_num_heads: int = 16,
predict_feature_dim: int = 512, mlp_ratio: int = 4,
norm_cfg: dict = {'eps': 1e-06, 'type': 'LN'},
init_cfg: Optional[Union[dict, List[dict]]] =
None)

Prompt decoder for MILAN.

This decoder is used in MILAN pretraining, which will not update these visible tokens from the encoder.

Parameters
• num_patches (int) – The number of total patches. Defaults to 196.

• patch_size (int) – Image patch size. Defaults to 16.

• in_chans (int) – The channel of input image. Defaults to 3.

• embed_dim (int) – Encoder’s embedding dimension. Defaults to 1024.

• decoder_embed_dim (int) – Decoder’s embedding dimension. Defaults to 512.

• decoder_depth (int) – The depth of decoder. Defaults to 8.

• decoder_num_heads (int) – Number of attention heads of decoder. Defaults to 16.

37.3. necks 211

MMSelfSup, Release 1.0.0rc6

• predict_feature_dim (int) – The dimension of the feature to be predicted. Defaults to
512.

• mlp_ratio (int) – Ratio of mlp hidden dim to decoder’s embedding dim. Defaults to 4.

• norm_cfg (dict) – Normalization layer. Defaults to LayerNorm.

• init_cfg (Union[List[dict], dict], optional) – Initialization config dict. De-
faults to None.

forward(x: torch.Tensor, ids_restore: torch.Tensor, ids_keep: torch.Tensor, ids_dump: torch.Tensor)→
torch.Tensor

Forward function.

Parameters
• x (torch.Tensor) – The input features, which is of shape (N, L, C).

• ids_restore (torch.Tensor) – The indices to restore these tokens to the original image.

• ids_keep (torch.Tensor) – The indices of tokens to be kept.

• ids_dump (torch.Tensor) – The indices of tokens to be masked.

Returns
The reconstructed features, which is of shape (N, L, C).

Return type torch.Tensor

class mmselfsup.models.necks.MixMIMPretrainDecoder(num_patches: int = 196, patch_size: int = 16,
in_chans: int = 3, embed_dim: int = 1024,
encoder_stride: int = 32, decoder_embed_dim:
int = 512, decoder_depth: int = 8,
decoder_num_heads: int = 16, mlp_ratio: int = 4,
norm_cfg: dict = {'eps': 1e-06, 'type': 'LN'},
init_cfg: Optional[Union[dict, List[dict]]] =
None)

Decoder for MixMIM Pretraining.

Some of the code is borrowed from https://github.com/Sense-X/MixMIM. # noqa

Parameters
• num_patches (int) – The number of total patches. Defaults to 196.

• patch_size (int) – Image patch size. Defaults to 16.

• in_chans (int) – The channel of input image. Defaults to 3.

• embed_dim (int) – Encoder’s embedding dimension. Defaults to 1024.

• encoder_stride (int) – The output stride of MixMIM backbone. Defaults to 32.

• decoder_embed_dim (int) – Decoder’s embedding dimension. Defaults to 512.

• decoder_depth (int) – The depth of decoder. Defaults to 8.

• decoder_num_heads (int) – Number of attention heads of decoder. Defaults to 16.

• mlp_ratio (int) – Ratio of mlp hidden dim to decoder’s embedding dim. Defaults to 4.

• norm_cfg (dict) – Normalization layer. Defaults to LayerNorm.

• init_cfg (Union[List[dict], dict], optional) – Initialization config dict. De-
faults to None.

212 Chapter 37. mmselfsup.models

MMSelfSup, Release 1.0.0rc6

forward(x: torch.Tensor, mask: torch.Tensor)→ torch.Tensor
Forward function.

Parameters
• x (torch.Tensor) – The input features, which is of shape (N, L, C).

• mask (torch.Tensor) – The tensor to indicate which tokens a re masked.

Returns
The reconstructed features, which is of shape (N, L, C).

Return type torch.Tensor

init_weights()→ None
Initialize position embedding and mask token of MixMIM decoder.

class mmselfsup.models.necks.MoCoV2Neck(in_channels: int, hid_channels: int, out_channels: int,
with_avg_pool: bool = True, init_cfg: Optional[Union[dict,
List[dict]]] = None)

The non-linear neck of MoCo v2: fc-relu-fc.

Parameters
• in_channels (int) – Number of input channels.

• hid_channels (int) – Number of hidden channels.

• out_channels (int) – Number of output channels.

• with_avg_pool (bool) – Whether to apply the global average pooling after backbone. De-
faults to True.

• init_cfg (dict or list[dict], optional) – Initialization config dict. Defaults to
None.

forward(x: List[torch.Tensor])→ List[torch.Tensor]
Forward function.

Parameters x (List[torch.Tensor]) – The feature map of backbone.

Returns The output features.

Return type List[torch.Tensor]

class mmselfsup.models.necks.NonLinearNeck(in_channels: int, hid_channels: int, out_channels: int,
num_layers: int = 2, with_bias: bool = False, with_last_bn:
bool = True, with_last_bn_affine: bool = True,
with_last_bias: bool = False, with_avg_pool: bool = True,
vit_backbone: bool = False, norm_cfg: dict = {'type':
'SyncBN'}, init_cfg: Optional[Union[dict, List[dict]]] =
[{'type': 'Constant', 'val': 1, 'layer': ['_BatchNorm',
'GroupNorm']}])

The non-linear neck.

Structure: fc-bn-[relu-fc-bn] where the substructure in [] can be repeated. For the default setting, the repeated
time is 1. The neck can be used in many algorithms, e.g., SimCLR, BYOL, SimSiam.

Parameters
• in_channels (int) – Number of input channels.

• hid_channels (int) – Number of hidden channels.

• out_channels (int) – Number of output channels.

37.3. necks 213

MMSelfSup, Release 1.0.0rc6

• num_layers (int) – Number of fc layers. Defaults to 2.

• with_bias (bool) – Whether to use bias in fc layers (except for the last). Defaults to False.

• with_last_bn (bool) – Whether to add the last BN layer. Defaults to True.

• with_last_bn_affine (bool) – Whether to have learnable affine parameters in the last
BN layer (set False for SimSiam). Defaults to True.

• with_last_bias (bool) – Whether to use bias in the last fc layer. Defaults to False.

• with_avg_pool (bool) – Whether to apply the global average pooling after backbone. De-
faults to True.

• vit_backbone (bool) – The key to indicate whether the upstream backbone is ViT. Defaults
to False.

• norm_cfg (dict) – Dictionary to construct and config norm layer. Defaults to
dict(type=’SyncBN’).

• init_cfg (dict or list[dict], optional) – Initialization config dict.

forward(x: Tuple[torch.Tensor])→ List[torch.Tensor]
Forward function.

Parameters x (List[torch.Tensor]) – The feature map of backbone.

Returns The output features.

Return type List[torch.Tensor]

class mmselfsup.models.necks.ODCNeck(in_channels: int, hid_channels: int, out_channels: int,
with_avg_pool: bool = True, norm_cfg: dict = {'type': 'SyncBN'},
init_cfg: Optional[Union[dict, List[dict]]] = [{'type': 'Constant',
'val': 1, 'layer': ['_BatchNorm', 'GroupNorm']}])

The non-linear neck of ODC: fc-bn-relu-dropout-fc-relu.

Parameters
• in_channels (int) – Number of input channels.

• hid_channels (int) – Number of hidden channels.

• out_channels (int) – Number of output channels.

• with_avg_pool (bool) – Whether to apply the global average pooling after backbone. De-
faults to True.

• norm_cfg (dict) – Dictionary to construct and config norm layer. Defaults to
dict(type=’SyncBN’).

• init_cfg (dict or list[dict], optional) – Initialization config dict.

forward(x: List[torch.Tensor])→ List[torch.Tensor]
Forward function.

Parameters x (List[torch.Tensor]) – The feature map of backbone.

Returns The output features.

Return type List[torch.Tensor]

214 Chapter 37. mmselfsup.models

MMSelfSup, Release 1.0.0rc6

class mmselfsup.models.necks.RelativeLocNeck(in_channels: int, out_channels: int, with_avg_pool: bool
= True, norm_cfg: dict = {'type': 'BN1d'}, init_cfg:
Optional[Union[dict, List[dict]]] = [{'type': 'Normal',
'std': 0.01, 'layer': 'Linear'}, {'type': 'Constant', 'val': 1,
'layer': ['_BatchNorm', 'GroupNorm']}])

The neck of relative patch location: fc-bn-relu-dropout.

Parameters
• in_channels (int) – Number of input channels.

• out_channels (int) – Number of output channels.

• with_avg_pool (bool) – Whether to apply the global average pooling after backbone. De-
faults to True.

• norm_cfg (dict) – Dictionary to construct and config norm layer. Defaults to
dict(type=’BN1d’).

• init_cfg (dict or list[dict], optional) – Initialization config dict.

forward(x: List[torch.Tensor])→ List[torch.Tensor]
Forward function.

Parameters x (List[torch.Tensor]) – The feature map of backbone.

Returns The output features.

Return type List[torch.Tensor]

class mmselfsup.models.necks.SimMIMNeck(in_channels: int, encoder_stride: int)
Pre-train Neck For SimMIM.

This neck reconstructs the original image from the shrunk feature map.

Parameters
• in_channels (int) – Channel dimension of the feature map.

• encoder_stride (int) – The total stride of the encoder.

forward(x: torch.Tensor)→ torch.Tensor
Forward function.

class mmselfsup.models.necks.SwAVNeck(in_channels: int, hid_channels: int, out_channels: int,
with_avg_pool: bool = True, with_l2norm: bool = True, norm_cfg:
dict = {'type': 'SyncBN'}, init_cfg: Optional[Union[dict,
List[dict]]] = [{'type': 'Constant', 'val': 1, 'layer': ['_BatchNorm',
'GroupNorm']}])

The non-linear neck of SwAV: fc-bn-relu-fc-normalization.

Parameters
• in_channels (int) – Number of input channels.

• hid_channels (int) – Number of hidden channels.

• out_channels (int) – Number of output channels.

• with_avg_pool (bool) – Whether to apply the global average pooling after backbone. De-
faults to True.

• with_l2norm (bool) – whether to normalize the output after projection. Defaults to True.

• norm_cfg (dict) – Dictionary to construct and config norm layer. Defaults to
dict(type=’SyncBN’).

37.3. necks 215

MMSelfSup, Release 1.0.0rc6

• init_cfg (dict or list[dict], optional) – Initialization config dict.

forward(x: List[torch.Tensor])→ List[torch.Tensor]
Forward function.

Parameters x (List[torch.Tensor]) – list of feature maps, len(x) according to
len(num_crops).

Returns The projection vectors.

Return type List[torch.Tensor]

forward_projection(x: torch.Tensor)→ torch.Tensor
Compute projection.

Parameters x (torch.Tensor) – The feature vectors after pooling.

Returns The output features with projection or L2-norm.

Return type torch.Tensor

37.4 heads

class mmselfsup.models.heads.BEiTV1Head(embed_dims: int, num_embed: int, loss: dict, init_cfg:
Optional[Union[dict, List[dict]]] = {'bias': 0, 'layer': 'Linear',
'std': 0.02, 'type': 'TruncNormal'})

Pretrain Head for BEiT v1.

Compute the logits and the cross entropy loss.

Parameters
• embed_dims (int) – The dimension of embedding.

• num_embed (int) – The number of classification types.

• loss (dict) – The config of loss.

• init_cfg (dict or List[dict], optional) – Initialization config dict. Defaults to
None.

forward(feats: torch.Tensor, target: torch.Tensor, mask: torch.Tensor)→ torch.Tensor
Generate loss.

Parameters
• feats (torch.Tensor) – Features from backbone.

• target (torch.Tensor) – Target generated by target_generator.

• mask (torch.Tensor) – Generated mask for pretraing.

class mmselfsup.models.heads.BEiTV2Head(embed_dims: int, num_embed: int, loss: dict, init_cfg:
Optional[Union[dict, List[dict]]] = {'bias': 0, 'layer': 'Linear',
'std': 0.02, 'type': 'TruncNormal'})

Pretrain Head for BEiT.

Compute the logits and the cross entropy loss.

Parameters
• embed_dims (int) – The dimension of embedding.

• num_embed (int) – The number of classification types.

216 Chapter 37. mmselfsup.models

MMSelfSup, Release 1.0.0rc6

• loss (dict) – The config of loss.

• init_cfg (dict or List[dict], optional) – Initialization config dict. Defaults to
None.

forward(feats: torch.Tensor, feats_cls_pt: torch.Tensor, target: torch.Tensor, mask: torch.Tensor)→
torch.Tensor

Generate loss.

Parameters
• feats (torch.Tensor) – Features from backbone.

• feats_cls_pt (torch.Tensor) – Features from class late layers for pretraining.

• target (torch.Tensor) – Target generated by target_generator.

• mask (torch.Tensor) – Generated mask for pretraing.

class mmselfsup.models.heads.CAEHead(loss: dict, init_cfg: Optional[Union[dict, List[dict]]] = None)
Pretrain Head for CAE.

Compute the align loss and the main loss. In addition, this head also generates the prediction target generated by
dalle.

Parameters
• loss (dict) – The config of loss.

• tokenizer_path (str) – The path of the tokenizer.

• init_cfg (dict or List[dict], optional) – Initialization config dict. Defaults to
None.

forward(logits: torch.Tensor, logits_target: torch.Tensor, latent_pred: torch.Tensor, latent_target:
torch.Tensor, mask: torch.Tensor)→ Tuple[torch.Tensor, torch.Tensor]

Generate loss.

Parameters
• logits (torch.Tensor) – Logits generated by decoder.

• logits_target (img_target) – Target generated by dalle for decoder prediction.

• latent_pred (torch.Tensor) – Latent prediction by regressor.

• latent_target (torch.Tensor) – Target for latent prediction, generated by teacher.

Returns
The tuple of loss.

• loss_main (torch.Tensor): Cross entropy loss.

• loss_align (torch.Tensor): MSE loss.

Return type Tuple[torch.Tensor, torch.Tensor]

class mmselfsup.models.heads.ClsHead(loss: dict, with_avg_pool: bool = False, in_channels: int = 2048,
num_classes: int = 1000, vit_backbone: bool = False, init_cfg:
Optional[Union[dict, List[dict]]] = [{'type': 'Normal', 'std': 0.01,
'layer': 'Linear'}, {'type': 'Constant', 'val': 1, 'layer': ['_BatchNorm',
'GroupNorm']}])

Simplest classifier head, with only one fc layer.

Parameters

37.4. heads 217

MMSelfSup, Release 1.0.0rc6

• loss (dict) – Config of the loss.

• with_avg_pool (bool) – Whether to apply the average pooling after neck. Defaults to
False.

• in_channels (int) – Number of input channels. Defaults to 2048.

• num_classes (int) – Number of classes. Defaults to 1000.

• init_cfg (Dict or List[Dict], optional) – Initialization config dict.

forward(x: Union[List[torch.Tensor], Tuple[torch.Tensor]], label: torch.Tensor)→ torch.Tensor
Get the loss.

Parameters
• x (List[Tensor] | Tuple[Tensor]) – Feature maps of backbone, each tensor has

shape (N, C, H, W).

• label (torch.Tensor) – The label for cross entropy loss.

Returns The cross entropy loss.

Return type torch.Tensor

logits(x: Union[List[torch.Tensor], Tuple[torch.Tensor]])→ List[torch.Tensor]
Get the logits before the cross_entropy loss.

This module is used to obtain the logits before the loss.

Parameters x (List[Tensor] | Tuple[Tensor]) – Feature maps of backbone, each tensor
has shape (N, C, H, W).

Returns A list of class scores.

Return type List[Tensor]

class mmselfsup.models.heads.ContrastiveHead(loss: dict, temperature: float = 0.1)
Head for contrastive learning.

The contrastive loss is implemented in this head and is used in SimCLR, MoCo, DenseCL, etc.

Parameters
• loss (dict) – Config dict for module of loss functions.

• temperature (float) – The temperature hyper-parameter that controls the concentration
level of the distribution. Defaults to 0.1.

forward(pos: torch.Tensor, neg: torch.Tensor)→ torch.Tensor
Forward function to compute contrastive loss.

Parameters
• pos (torch.Tensor) – Nx1 positive similarity.

• neg (torch.Tensor) – Nxk negative similarity.

Returns The contrastive loss.

Return type torch.Tensor

class mmselfsup.models.heads.LatentCrossCorrelationHead(in_channels: int, loss: dict)
Head for latent feature cross correlation.

Part of the code is borrowed from script.

Parameters

218 Chapter 37. mmselfsup.models

https://github.com/facebookresearch/barlowtwins/blob/main/main.py

MMSelfSup, Release 1.0.0rc6

• in_channels (int) – Number of input channels.

• loss (dict) – Config dict for module of loss functions.

forward(input: torch.Tensor, target: torch.Tensor)→ torch.Tensor
Forward head.

Parameters
• input (torch.Tensor) – NxC input features.

• target (torch.Tensor) – NxC target features.

Returns The cross correlation loss.

Return type torch.Tensor

class mmselfsup.models.heads.LatentPredictHead(loss: dict, predictor: dict)
Head for latent feature prediction.

This head builds a predictor, which can be any registered neck component. For example, BYOL and SimSiam
call this head and build NonLinearNeck. It also implements similarity loss between two forward features.

Parameters
• loss (dict) – Config dict for the loss.

• predictor (dict) – Config dict for the predictor.

forward(input: torch.Tensor, target: torch.Tensor)→ Tuple[torch.Tensor, torch.Tensor]
Forward head.

Parameters
• input (torch.Tensor) – NxC input features.

• target (torch.Tensor) – NxC target features.

Returns The latent predict loss.

Return type torch.Tensor

class mmselfsup.models.heads.MAEPretrainHead(loss: dict, norm_pix: bool = False, patch_size: int = 16)
Pre-training head for MAE.

Parameters
• loss (dict) – Config of loss.

• norm_pix_loss (bool) – Whether or not normalize target. Defaults to False.

• patch_size (int) – Patch size. Defaults to 16.

construct_target(target: torch.Tensor)→ torch.Tensor
Construct the reconstruction target.

In addition to splitting images into tokens, this module will also normalize the image according to
norm_pix.

Parameters target (torch.Tensor) – Image with the shape of B x 3 x H x W

Returns Tokenized images with the shape of B x L x C

Return type torch.Tensor

forward(pred: torch.Tensor, target: torch.Tensor, mask: torch.Tensor)→ torch.Tensor
Forward function of MAE head.

Parameters

37.4. heads 219

MMSelfSup, Release 1.0.0rc6

• pred (torch.Tensor) – The reconstructed image.

• target (torch.Tensor) – The target image.

• mask (torch.Tensor) – The mask of the target image.

Returns The reconstruction loss.

Return type torch.Tensor

patchify(imgs: torch.Tensor)→ torch.Tensor
Split images into non-overlapped patches.

Parameters imgs (torch.Tensor) – A batch of images, of shape B x H x W x C.

Returns Patchified images. The shape is B x L x D.

Return type torch.Tensor

unpatchify(x: torch.Tensor)→ torch.Tensor
Combine non-overlapped patches into images.

Parameters x (torch.Tensor) – The shape is (N, L, patch_size**2 *3)

Returns The shape is (N, 3, H, W)

Return type imgs (torch.Tensor)

class mmselfsup.models.heads.MILANPretrainHead(loss: dict)
MILAN pretrain head.

Parameters loss (dict) – Config of loss.

forward(pred: torch.Tensor, target: torch.Tensor, mask: Optional[torch.Tensor] = None)→ torch.Tensor
Forward function.

Parameters
• pred (torch.Tensor) – Predicted features, of shape (N, L, D).

• target (torch.Tensor) – Target features, of shape (N, L, D).

• mask (torch.Tensor) – The mask of the target image of shape.

Returns the reconstructed loss.

Return type torch.Tensor

class mmselfsup.models.heads.MaskFeatPretrainHead(loss: dict)
Pre-training head for MaskFeat.

It computes reconstruction loss between prediction and target in masked region.

Parameters loss (dict) – Config dict for module of loss functions.

forward(pred: torch.Tensor, target: torch.Tensor, mask: torch.Tensor)→ torch.Tensor
Forward head.

Parameters
• latent (torch.Tensor) – Predictions, which is of shape B x (1 + L) x C.

• target (torch.Tensor) – Hog features, which is of shape B x L x C.

• mask (torch.Tensor) – The mask of the hog features, which is of shape B x H x W.

Returns The loss tensor.

Return type torch.Tensor

220 Chapter 37. mmselfsup.models

MMSelfSup, Release 1.0.0rc6

class mmselfsup.models.heads.MixMIMPretrainHead(loss: dict, norm_pix: bool = False, patch_size: int =
16)

MixMIM pretrain head.

Parameters
• loss (dict) – Config of loss.

• norm_pix_loss (bool) – Whether or not normalize target. Defaults to False.

• patch_size (int) – Patch size. Defaults to 16.

forward(x_rec: torch.Tensor, target: torch.Tensor, mask: torch.Tensor)→ torch.Tensor
Forward function of MixMIM head.

Parameters
• pred (torch.Tensor) – The reconstructed image.

• target (torch.Tensor) – The target image.

• mask (torch.Tensor) – The mask of the target image.

Returns The reconstruction loss.

Return type torch.Tensor

class mmselfsup.models.heads.MoCoV3Head(predictor: dict, loss: dict, temperature: float = 1.0)
Head for MoCo v3 algorithms.

This head builds a predictor, which can be any registered neck component. It also implements latent contrastive
loss between two forward features. Part of the code is modified from: https://github.com/facebookresearch/
moco-v3/blob/main/moco/builder.py.

Parameters
• predictor (dict) – Config dict for module of predictor.

• loss (dict) – Config dict for module of loss functions.

• temperature (float) – The temperature hyper-parameter that controls the concentration
level of the distribution. Defaults to 1.0.

forward(base_out: torch.Tensor, momentum_out: torch.Tensor)→ torch.Tensor
Forward head.

Parameters
• base_out (torch.Tensor) – NxC features from base_encoder.

• momentum_out (torch.Tensor) – NxC features from momentum_encoder.

Returns The loss tensor.

Return type torch.Tensor

class mmselfsup.models.heads.MultiClsHead(backbone: str = 'resnet50', in_indices: Sequence[int] = (0, 1,
2, 3, 4), pool_type: str = 'adaptive', num_classes: int = 1000,
loss: dict = {'loss_weight': 1.0, 'type':
'mmcls.CrossEntropyLoss'}, with_last_layer_unpool: bool =
False, cal_acc: bool = False, topk: Union[int, Tuple[int]] =
(1), norm_cfg: dict = {'type': 'BN'}, init_cfg: Union[dict,
List[dict]] = [{'type': 'Normal', 'std': 0.01, 'layer': 'Linear'},
{'type': 'Constant', 'val': 1, 'layer': ['_BatchNorm',
'GroupNorm']}])

Multiple classifier heads.

37.4. heads 221

https://github.com/facebookresearch/moco-v3/blob/main/moco/builder.py
https://github.com/facebookresearch/moco-v3/blob/main/moco/builder.py

MMSelfSup, Release 1.0.0rc6

This head inputs feature maps from different stages of backbone, average pools each feature map to around 9000
dimensions, and then appends a linear classifier at each stage to predict corresponding class scores.

Parameters
• backbone (str) – Specify which backbone to use, only support ResNet50. Defaults to

‘resnet50’.

• in_indices (Sequence[int]) – Input from which stages. Defaults to (0, 1, 2, 3, 4).

• pool_type (str) – ‘adaptive’ or ‘specified’. If set to ‘adaptive’, use adaptive average pool-
ing, otherwise use specified pooling params. Defaults to ‘adaptive’.

• num_classes (int) – Number of classes. Defaults to 1000.

• loss (dict) – The dict of loss information. Defaults to ‘mmcls.models.CrossEntro):
Whether to unpool the features from last layer. Defaults to False.

• cal_acc (bool) – Whether to calculate accuracy during training. If you use batch augmen-
tations like Mixup and CutMix during training, it is pointless to calculate accuracy. Defaults
to False.

• topk (int | Tuple[int]) – Top-k accuracy. Defaults to (1,).

• norm_cfg (dict) – Dict to construct and config norm layer. Defaults to dict(type='BN').

• init_cfg (dict or List[dict]) – Initialization config dict. Defaults to [
dict(type='Normal', std=0.01, layer='Linear'), dict(type='Constant',
val=1, layer=['_BatchNorm', 'GroupNorm'])]

forward(feats: Union[list, tuple])→ list
Compute multi-head scores.

Parameters feats (Sequence[torch.Tensor]) – Feature maps of backbone, each tensor has
shape (N, C, H, W).

Returns A list of class scores.

Return type List[torch.Tensor]

loss(feats: Sequence[torch.Tensor], data_samples: List[mmcls.structures.cls_data_sample.ClsDataSample],
**kwargs)→ dict

Calculate losses from the extracted features.

Parameters
• x (Sequence[torch.Tensor]) – Feature maps of backbone, each tensor has shape (N,

C, H, W).

• gt_label (torch.Tensor) – The ground truth label.

Returns Dict of loss and accuracy.

Return type Dict[str, torch.Tensor]

predict(feats: Sequence[torch.Tensor], data_samples:
List[mmcls.structures.cls_data_sample.ClsDataSample])→
List[mmcls.structures.cls_data_sample.ClsDataSample]

Inference without augmentation.

Parameters
• feats (tuple[Tensor]) – The extracted features.

• data_samples (List[BaseDataElement], optional) – The annotation data of every
samples. If not None, set pred_label of the input data samples.

222 Chapter 37. mmselfsup.models

MMSelfSup, Release 1.0.0rc6

Returns
The data samples containing annotation, prediction, etc.

Return type List[BaseDataElement]

class mmselfsup.models.heads.SimMIMHead(patch_size: int, loss: dict)
Pretrain Head for SimMIM.

Parameters
• patch_size (int) – Patch size of each token.

• loss (dict) – The config for loss.

forward(pred: torch.Tensor, target: torch.Tensor, mask: torch.Tensor)→ torch.Tensor
Forward function of MAE Loss.

This method will expand mask to the size of the original image.

Parameters
• pred (torch.Tensor) – The reconstructed image.

• target (torch.Tensor) – The target image.

• mask (torch.Tensor) – The mask of the target image.

Returns The reconstruction loss.

Return type torch.Tensor

class mmselfsup.models.heads.SwAVHead(loss: dict)
Head for SwAV.

Parameters loss (dict) – Config dict for module of loss functions.

forward(pred: torch.Tensor)→ torch.Tensor
Forward function of SwAV head.

Parameters pred (torch.Tensor) – NxC input features.

Returns The SwAV loss.

Return type torch.Tensor

37.5 losses

class mmselfsup.models.losses.BEiTLoss
Loss function for BEiT.

The BEiTLoss supports 2 diffenrent logits shared 1 target, like BEiT v2.

forward(logits: Union[Tuple[torch.Tensor], torch.Tensor], target: torch.Tensor)→ Tuple[torch.Tensor,
torch.Tensor]

Forward function of BEiT Loss.

Parameters
• logits (torch.Tensor) – The outputs from the decoder.

• target (torch.Tensor) – The targets generated by dalle.

Returns The main loss.

Return type Tuple[torch.Tensor, torch.Tensor]

37.5. losses 223

MMSelfSup, Release 1.0.0rc6

class mmselfsup.models.losses.CAELoss(lambd: float)
Loss function for CAE.

Compute the align loss and the main loss.

Parameters lambd (float) – The weight for the align loss.

forward(logits: torch.Tensor, target: torch.Tensor, latent_pred: torch.Tensor, latent_target: torch.Tensor)→
Tuple[torch.Tensor, torch.Tensor]

Forward function of CAE Loss.

Parameters
• logits (torch.Tensor) – The outputs from the decoder.

• target (torch.Tensor) – The targets generated by dalle.

• latent_pred (torch.Tensor) – The latent prediction from the regressor.

• latent_target (torch.Tensor) – The latent target from the teacher network.

Returns The main loss and align loss.

Return type Tuple[torch.Tensor, torch.Tensor]

class mmselfsup.models.losses.CosineSimilarityLoss(shift_factor: float = 0.0, scale_factor: float = 1.0)
Cosine similarity loss function.

Compute the similarity between two features and optimize that similarity as loss.

Parameters
• shift_factor (float) – The shift factor of cosine similarity. Default: 0.0.

• scale_factor (float) – The scale factor of cosine similarity. Default: 1.0.

forward(pred: torch.Tensor, target: torch.Tensor, mask: Optional[torch.Tensor] = None)→ torch.Tensor
Forward function of cosine similarity loss.

Parameters
• pred (torch.Tensor) – The predicted features.

• target (torch.Tensor) – The target features.

Returns The cosine similarity loss.

Return type torch.Tensor

class mmselfsup.models.losses.CrossCorrelationLoss(lambd: float = 0.0051)
Cross correlation loss function.

Compute the on-diagnal and off-diagnal loss.

Parameters lambd (float) – The weight for the off-diag loss.

forward(cross_correlation_matrix: torch.Tensor)→ torch.Tensor
Forward function of cross correlation loss.

Parameters cross_correlation_matrix (torch.Tensor) – The cross correlation matrix.

Returns cross correlation loss.

Return type torch.Tensor

off_diagonal(x: torch.Tensor)→ torch.Tensor
Rreturn a flattened view of the off-diagonal elements of a square matrix.

224 Chapter 37. mmselfsup.models

MMSelfSup, Release 1.0.0rc6

class mmselfsup.models.losses.MAEReconstructionLoss
Loss function for MAE.

Compute the loss in masked region.

forward(pred: torch.Tensor, target: torch.Tensor, mask: torch.Tensor)→ torch.Tensor
Forward function of MAE Loss.

Parameters
• pred (torch.Tensor) – The reconstructed image.

• target (torch.Tensor) – The target image.

• mask (torch.Tensor) – The mask of the target image.

Returns The reconstruction loss.

Return type torch.Tensor

class mmselfsup.models.losses.PixelReconstructionLoss(criterion: str, channel: Optional[int] = None)
Loss for the reconstruction of pixel in Masked Image Modeling.

This module measures the distance between the target image and the reconstructed image and compute the loss
to optimize the model. Currently, This module only provides L1 and L2 loss to penalize the reconstructed error.
In addition, a mask can be passed in the forward function to only apply loss on visible region, like that in MAE.

Parameters
• criterion (str) – The loss the penalize the reconstructed error. Currently, only supports

L1 and L2 loss

• channel (int, optional) – The number of channels to average the reconstruction loss.
If not None, the reconstruction loss will be divided by the channel. Defaults to None.

forward(pred: torch.Tensor, target: torch.Tensor, mask: Optional[torch.Tensor] = None)→ torch.Tensor
Forward function to compute the reconstrction loss.

Parameters
• pred (torch.Tensor) – The reconstructed image.

• target (torch.Tensor) – The target image.

• mask (torch.Tensor) – The mask of the target image.

Returns The reconstruction loss.

Return type torch.Tensor

class mmselfsup.models.losses.SimMIMReconstructionLoss(encoder_in_channels: int)
Loss function for MAE.

Compute the loss in masked region.

Parameters encoder_in_channels (int) – Number of input channels for encoder.

forward(pred: torch.Tensor, target: torch.Tensor, mask: torch.Tensor)→ torch.Tensor
Forward function of MAE Loss.

Parameters
• pred (torch.Tensor) – The reconstructed image.

• target (torch.Tensor) – The target image.

• mask (torch.Tensor) – The mask of the target image.

37.5. losses 225

MMSelfSup, Release 1.0.0rc6

Returns The reconstruction loss.

Return type torch.Tensor

class mmselfsup.models.losses.SwAVLoss(feat_dim: int, sinkhorn_iterations: int = 3, epsilon: float = 0.05,
temperature: float = 0.1, crops_for_assign: List[int] = [0, 1],
num_crops: List[int] = [2], num_prototypes: int = 3000, init_cfg:
Optional[Union[dict, List[dict]]] = None)

The Loss for SwAV.

This Loss contains clustering and sinkhorn algorithms to compute Q codes. Part of the code is borrowed from
script. The queue is built in engine/hooks/swav_hook.py.

Parameters
• feat_dim (int) – feature dimension of the prototypes.

• sinkhorn_iterations (int) – number of iterations in Sinkhorn-Knopp algorithm. De-
faults to 3.

• epsilon (float) – regularization parameter for Sinkhorn-Knopp algorithm. Defaults to
0.05.

• temperature (float) – temperature parameter in training loss. Defaults to 0.1.

• crops_for_assign (List[int]) – list of crops id used for computing assignments. De-
faults to [0, 1].

• num_crops (List[int]) – list of number of crops. Defaults to [2].

• num_prototypes (int) – number of prototypes. Defaults to 3000.

• init_cfg (dict or List[dict], optional) – Initialization config dict. Defaults to
None.

forward(x: torch.Tensor)→ torch.Tensor
Forward function of SwAV loss.

Parameters x (torch.Tensor) – NxC input features.

Returns The returned loss.

Return type torch.Tensor

37.6 memories

class mmselfsup.models.memories.ODCMemory(length: int, feat_dim: int, momentum: float, num_classes: int,
min_cluster: int, **kwargs)

Memory module for ODC.

This module includes the samples memory and the centroids memory in ODC. The samples memory stores
features and pseudo-labels of all samples in the dataset; while the centroids memory stores features of cluster
centroids.

Parameters
• length (int) – Number of features stored in the samples memory.

• feat_dim (int) – Dimension of stored features.

• momentum (float) – Momentum coefficient for updating features.

• num_classes (int) – Number of clusters.

226 Chapter 37. mmselfsup.models

https://github.com/facebookresearch/swav

MMSelfSup, Release 1.0.0rc6

• min_cluster (int) – Minimal cluster size.

deal_with_small_clusters()→ None
Deal with small clusters.

init_memory(feature: numpy.ndarray, label: numpy.ndarray)→ None
Initialize memory modules.

update_centroids_memory(cinds: Optional[List] = None)→ None
Update centroids memory.

update_samples_memory(idx: torch.Tensor, feature: torch.Tensor)→ torch.Tensor
Update samples memory.

class mmselfsup.models.memories.SimpleMemory(length: int, feat_dim: int, momentum: float, **kwargs)
Simple feature memory bank.

This module includes the memory bank that stores running average features of all samples in the dataset. It is
used in algorithms like NPID.

Parameters
• length (int) – Number of features stored in the memory bank.

• feat_dim (int) – Dimension of stored features.

• momentum (float) – Momentum coefficient for updating features.

update(idx: torch.Tensor, feature: torch.Tensor)→ None
Update features in the memory bank.

Parameters
• idx (torch.Tensor) – Indices for the batch of features.

• feature (torch.Tensor) – Batch of features.

37.7 target_generators

class mmselfsup.models.target_generators.CLIPGenerator(tokenizer_path: str)
Get the features and attention from the last layer of CLIP.

This module is used to generate target features in masked image modeling.

Parameters tokenizer_path (str) – The path of the checkpoint of CLIP.

forward(x: torch.Tensor)→ Tuple[torch.Tensor, torch.Tensor]
Get the features and attention from the last layer of CLIP.

Parameters x (torch.Tensor) – The input image, which is of shape (N, 3, H, W).

Returns The features and attention from the last layer of CLIP, which are of shape (N, L, C) and
(N, L, L), respectively.

Return type Tuple[torch.Tensor, torch.Tensor]

class mmselfsup.models.target_generators.Encoder(n_hid: int = 256, n_blk_per_group: int = 2,
input_channels: int = 3, vocab_size: int = 8192,
device: torch.device = device(type='cpu'),
requires_grad: bool = False, use_mixed_precision:
bool = True, init_cfg: Optional[Union[dict,
List[dict]]] = None)

37.7. target_generators 227

MMSelfSup, Release 1.0.0rc6

forward(x: torch.Tensor)→ torch.Tensor
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks while
the latter silently ignores them.

class mmselfsup.models.target_generators.HOGGenerator(nbins: int = 9, pool: int = 8,
gaussian_window: int = 16)

Generate HOG feature for images.

This module is used in MaskFeat to generate HOG feature. The code is modified from file slow-
fast/models/operators.py. Here is the link of HOG wikipedia.

Parameters
• nbins (int) – Number of bin. Defaults to 9.

• pool (float) – Number of cell. Defaults to 8.

• gaussian_window (int) – Size of gaussian kernel. Defaults to 16.

forward(x: torch.Tensor)→ torch.Tensor
Generate hog feature for each batch images.

Parameters x (torch.Tensor) – Input images of shape (N, 3, H, W).

Returns Hog features.

Return type torch.Tensor

generate_hog_image(hog_out: torch.Tensor)→ numpy.ndarray
Generate HOG image according to HOG features.

get_gaussian_kernel(kernlen: int, std: int)→ torch.Tensor
Returns a 2D Gaussian kernel array.

class mmselfsup.models.target_generators.VQKD(encoder_config: dict, decoder_config: Optional[dict] =
None, num_embed: int = 8192, embed_dims: int = 32,
decay: float = 0.99, beta: float = 1.0,
quantize_kmeans_init: bool = True, init_cfg:
Optional[dict] = None)

Vector-Quantized Knowledge Distillation.

The module only contains encoder and VectorQuantizer part Modified from https://github.com/microsoft/unilm/
blob/master/beit2/modeling_vqkd.py

Parameters
• encoder_config (dict) – The config of encoder.

• decoder_config (dict, optional) – The config of decoder. Currently, VQKD only
support to build encoder. Defaults to None.

• num_embed (int) – Number of embedding vectors in the codebook. Defaults to 8192.

• embed_dims (int) – The dimension of embedding vectors in the codebook. Defaults to 32.

• decay (float) – The decay parameter of EMA. Defaults to 0.99.

• beta (float) – The mutiplier for VectorQuantizer loss. Defaults to 1.

228 Chapter 37. mmselfsup.models

https://github.com/facebookresearch/SlowFast/blob/main/slowfast/models/operators.py
https://github.com/facebookresearch/SlowFast/blob/main/slowfast/models/operators.py
https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
https://github.com/microsoft/unilm/blob/master/beit2/modeling_vqkd.py
https://github.com/microsoft/unilm/blob/master/beit2/modeling_vqkd.py

MMSelfSup, Release 1.0.0rc6

• quantize_kmeans_init (bool) – Whether to use k-means to initialize the VectorQuan-
tizer. Defaults to True.

• init_cfg (dict or List[dict], optional) – Initialization config dict. Defaults to
None.

encode(x: torch.Tensor)→ Tuple[torch.Tensor, torch.Tensor, torch.Tensor]
Encode the input images and get corresponding results.

forward(x: torch.Tensor)→ torch.Tensor
The forward function.

Currently, only support to get tokens.

get_tokens(x: torch.Tensor)→ dict
Get tokens for beit pre-training.

37.8 utils

class mmselfsup.models.utils.CAEDataPreprocessor(mean: Optional[Sequence[Union[int, float]]] =
None, std: Optional[Sequence[Union[int, float]]] =
None, pad_size_divisor: int = 1, pad_value:
Union[float, int] = 0, bgr_to_rgb: bool = False,
rgb_to_bgr: bool = False, non_blocking:
Optional[bool] = False)

Image pre-processor for CAE.

Compared with the mmselfsup.SelfSupDataPreprocessor, this module will normalize the prediction image
and target image with different normalization parameters.

forward(data: dict, training: bool = False)→ Tuple[List[torch.Tensor], Optional[list]]
Performs normalizationpadding and bgr2rgb conversion based on BaseDataPreprocessor.

Parameters
• data (dict) – data sampled from dataloader.

• training (bool) – Whether to enable training time augmentation. If subclasses override
this method, they can perform different preprocessing strategies for training and testing
based on the value of training.

Returns Data in the same format as the model input.

Return type Tuple[torch.Tensor, Optional[list]]

class mmselfsup.models.utils.CAETransformerRegressorLayer(embed_dims: int, num_heads: int,
feedforward_channels: int, num_fcs: int
= 2, qkv_bias: bool = False, qk_scale:
Optional[float] = None, drop_rate: float
= 0.0, attn_drop_rate: float = 0.0,
drop_path_rate: float = 0.0, init_values:
float = 0.0, act_cfg: dict = {'type':
'GELU'}, norm_cfg: dict = {'eps': 1e-06,
'type': 'LN'})

Transformer layer for the regressor of CAE.

This module is different from conventional transformer encoder layer, for its queries are the masked tokens, but
its keys and values are the concatenation of the masked and unmasked tokens.

Parameters

37.8. utils 229

MMSelfSup, Release 1.0.0rc6

• embed_dims (int) – The feature dimension.

• num_heads (int) – The number of heads in multi-head attention.

• feedforward_channels (int) – The hidden dimension of FFNs. Defaults: 1024.

• num_fcs (int, optional) – The number of fully-connected layers in FFNs. Default: 2.

• qkv_bias (bool) – If True, add a learnable bias to q, k, v. Defaults to True.

• qk_scale (float, optional) – Override default qk scale of head_dim ** -0.5 if set.
Defaults to None.

• drop_rate (float) – The dropout rate. Defaults to 0.0.

• attn_drop_rate (float) – The drop out rate for attention output weights. Defaults to 0.

• drop_path_rate (float) – Stochastic depth rate. Defaults to 0.

• init_values (float) – The init values of gamma. Defaults to 0.0.

• act_cfg (dict) – The activation config for FFNs. Defaluts to dict(type='GELU').

• norm_cfg (dict) – Config dict for normalization layer. Defaults to dict(type='LN').

forward(x_q: torch.Tensor, x_kv: torch.Tensor, pos_q: torch.Tensor, pos_k: torch.Tensor)→ torch.Tensor
Forward function.

class mmselfsup.models.utils.CosineEMA(model: torch.nn.modules.module.Module, momentum: float =
0.996, end_momentum: float = 1.0, interval: int = 1, device:
Optional[torch.device] = None, update_buffers: bool = False)

CosineEMA is implemented for updating momentum parameter, used in BYOL, MoCoV3, etc.

The momentum parameter is updated with cosine annealing, including momentum adjustment following:

𝑚 = 𝑚1 − (𝑚1 −𝑚0) * (𝑐𝑜𝑠(𝑝𝑖 * 𝑘/𝐾) + 1)/2

where 𝑘 is the current step, 𝐾 is the total steps.

Parameters
• model (nn.Module) – The model to be averaged.

• momentum (float) – The momentum used for updating ema parameter. Ema’s parame-
ter are updated with the formula: averaged_param = momentum * averaged_param + (1-
momentum) * source_param. Defaults to 0.996.

• end_momentum (float) – The end momentum value for cosine annealing. Defaults to 1.

• interval (int) – Interval between two updates. Defaults to 1.

• device (torch.device, optional) – If provided, the averaged model will be stored on
the device. Defaults to None.

• update_buffers (bool) – if True, it will compute running averages for both the parameters
and the buffers of the model. Defaults to False.

avg_func(averaged_param: torch.Tensor, source_param: torch.Tensor, steps: int)→ None
Compute the moving average of the parameters using the cosine momentum strategy.

Parameters
• averaged_param (Tensor) – The averaged parameters.

• source_param (Tensor) – The source parameters.

• steps (int) – The number of times the parameters have been updated.

230 Chapter 37. mmselfsup.models

MMSelfSup, Release 1.0.0rc6

Returns The averaged parameters.

Return type Tensor

class mmselfsup.models.utils.Extractor(extract_dataloader:
Union[torch.utils.data.dataloader.DataLoader, dict], seed:
Optional[int] = None, dist_mode: bool = False, pool_cfg:
Optional[dict] = None, **kwargs)

Feature extractor.

The extractor support to build its own DataLoader, customized models, pooling type. It also has distributed and
non-distributed mode.

Parameters
• extract_dataloader (dict) – A dict to build DataLoader object.

• seed (int, optional) – Random seed. Defaults to None.

• dist_mode (bool) – Use distributed extraction or not. Defaults to False.

• pool_cfg (dict, optional) – The configs of pooling. Defaults to dict(type=’AvgPool2d’,
output_size=1).

class mmselfsup.models.utils.GatherLayer(*args, **kwargs)
Gather tensors from all process, supporting backward propagation.

static backward(ctx: Any, *grads: torch.Tensor)→ torch.Tensor
Defines a formula for differentiating the operation with backward mode automatic differentiation (alias to
the vjp function).

This function is to be overridden by all subclasses.

It must accept a context ctx as the first argument, followed by as many outputs as the forward() returned
(None will be passed in for non tensor outputs of the forward function), and it should return as many tensors,
as there were inputs to forward(). Each argument is the gradient w.r.t the given output, and each returned
value should be the gradient w.r.t. the corresponding input. If an input is not a Tensor or is a Tensor not
requiring grads, you can just pass None as a gradient for that input.

The context can be used to retrieve tensors saved during the forward pass. It also has an attribute
ctx.needs_input_grad as a tuple of booleans representing whether each input needs gradient. E.g.,
backward() will have ctx.needs_input_grad[0] = True if the first input to forward() needs gra-
dient computated w.r.t. the output.

static forward(ctx: Any, input: torch.Tensor)→ Tuple[List]
Performs the operation.

This function is to be overridden by all subclasses.

It must accept a context ctx as the first argument, followed by any number of arguments (tensors or other
types).

The context can be used to store arbitrary data that can be then retrieved during the backward pass. Tensors
should not be stored directly on ctx (though this is not currently enforced for backward compatibility).
Instead, tensors should be saved either with ctx.save_for_backward() if they are intended to be used
in backward (equivalently, vjp) or ctx.save_for_forward() if they are intended to be used for in jvp.

class mmselfsup.models.utils.MultiPooling(pool_type: str = 'adaptive', in_indices: tuple = (0), backbone:
str = 'resnet50')

Pooling layers for features from multiple depth.

Parameters

37.8. utils 231

MMSelfSup, Release 1.0.0rc6

• pool_type (str) – Pooling type for the feature map. Options are ‘adaptive’ and ‘specified’.
Defaults to ‘adaptive’.

• in_indices (Sequence[int]) – Output from which backbone stages. Defaults to (0,).

• backbone (str) – The selected backbone. Defaults to ‘resnet50’.

forward(x: Union[List, Tuple])→ None
Forward function.

class mmselfsup.models.utils.MultiPrototypes(output_dim: int, num_prototypes: List[int])
Multi-prototypes for SwAV head.

Parameters
• output_dim (int) – The output dim from SwAV neck.

• num_prototypes (List[int]) – The number of prototypes needed.

forward(x: torch.Tensor)→ List[torch.Tensor]
Run forward for every prototype.

class mmselfsup.models.utils.MultiheadAttention(embed_dims: int, num_heads: int, input_dims:
Optional[int] = None, attn_drop: float = 0.0,
proj_drop: float = 0.0, qkv_bias: bool = True,
qk_scale: Optional[float] = None, proj_bias: bool =
True, init_cfg: Optional[dict] = None)

Multi-head Attention Module.

This module rewrite the MultiheadAttention by replacing qkv bias with customized qkv bias, in addition to
removing the drop path layer.

Parameters
• embed_dims (int) – The embedding dimension.

• num_heads (int) – Parallel attention heads.

• input_dims (int, optional) – The input dimension, and if None, use embed_dims. De-
faults to None.

• attn_drop (float) – Dropout rate of the dropout layer after the attention calculation of
query and key. Defaults to 0.

• proj_drop (float) – Dropout rate of the dropout layer after the output projection. Defaults
to 0.

• dropout_layer (dict) – The dropout config before adding the shortcut. Defaults to
dict(type='Dropout', drop_prob=0.).

• qkv_bias (bool) – If True, add a learnable bias to q, k, v. Defaults to True.

• qk_scale (float, optional) – Override default qk scale of head_dim ** -0.5 if set.
Defaults to None.

• proj_bias (bool) – Defaults to True.

• init_cfg (dict, optional) – The Config for initialization. Defaults to None.

forward(x: torch.Tensor)→ torch.Tensor
Forward function.

232 Chapter 37. mmselfsup.models

MMSelfSup, Release 1.0.0rc6

class mmselfsup.models.utils.NormEMAVectorQuantizer(num_embed: int, embed_dims: int, beta: float,
decay: float = 0.99, statistic_code_usage: bool
= True, kmeans_init: bool = True,
codebook_init_path: Optional[str] = None)

Normed EMA vector quantizer module.

Parameters
• num_embed (int) – Number of embedding vectors in the codebook. Defaults to 8192.

• embed_dims (int) – The dimension of embedding vectors in the codebook. Defaults to 32.

• beta (float) – The mutiplier for VectorQuantizer embedding loss. Defaults to 1.

• decay (float) – The decay parameter of EMA. Defaults to 0.99.

• statistic_code_usage (bool) – Whether to use cluster_size to record statistic. Defaults
to True.

• kmeans_init (bool) – Whether to use k-means to initialize the VectorQuantizer. Defaults
to True.

• codebook_init_path (str) – The initialization checkpoint for codebook. Defaults to
None.

forward(z)
Forward function.

class mmselfsup.models.utils.PromptTransformerEncoderLayer(embed_dims: int, num_heads: int,
feedforward_channels=<class 'int'>,
drop_rate: float = 0.0, attn_drop_rate:
float = 0.0, drop_path_rate: float = 0.0,
num_fcs: int = 2, qkv_bias: bool =
True, act_cfg: dict = {'type': 'GELU'},
norm_cfg: dict = {'type': 'LN'},
init_cfg: Optional[Union[dict,
List[dict]]] = None)

Prompt Transformer Encoder Layer for MILAN.

This module is specific for the prompt encoder in MILAN. It will not update the visible tokens from the encoder.

Parameters
• embed_dims (int) – The feature dimension.

• num_heads (int) – Parallel attention heads.

• feedforward_channels (int) – The hidden dimension for FFNs.

• drop_rate (float) – Probability of an element to be zeroed after the feed forward layer.
Defaults to 0.0.

• attn_drop_rate (float) – The drop out rate for attention layer. Defaults to 0.0.

• drop_path_rate (float) – Stochastic depth rate. Defaults to 0.0.

• num_fcs (int) – The number of fully-connected layers for FFNs. Defaults to 2.

• qkv_bias (bool) – Enable bias for qkv if True. Defaults to True.

• act_cfg (dict) – The activation config for FFNs. Defaluts to dict(type='GELU').

• norm_cfg (dict) – Config dict for normalization layer. Defaults to dict(type='LN').

37.8. utils 233

MMSelfSup, Release 1.0.0rc6

• batch_first (bool) – Key, Query and Value are shape of (batch, n, embed_dim) or (n,
batch, embed_dim). Defaults to False.

• init_cfg (dict, optional) – The Config for initialization. Defaults to None.

forward(x: torch.Tensor, visible_tokens: torch.Tensor, ids_restore: torch.Tensor)→ torch.Tensor
Forward function for PromptMultiheadAttention.

Parameters
• x (torch.Tensor) – Mask token features with shape N x L_m x C.

• visible_tokens (torch.Tensor) – The visible tokens features from encoder with shape
N x L_v x C.

• ids_restore (torch.Tensor) – The ids of all tokens in the original image with shape
N x L.

Returns Output features with shape N x L x C.

Return type torch Tensor

class mmselfsup.models.utils.RelativeLocDataPreprocessor(mean: Optional[Sequence[Union[int,
float]]] = None, std:
Optional[Sequence[Union[int, float]]] =
None, pad_size_divisor: int = 1,
pad_value: Union[float, int] = 0,
bgr_to_rgb: bool = False, rgb_to_bgr:
bool = False, non_blocking:
Optional[bool] = False)

Image pre-processor for Relative Location.

forward(data: dict, training: bool = False)→ Tuple[List[torch.Tensor], Optional[list]]
Performs normalizationpadding and bgr2rgb conversion based on BaseDataPreprocessor.

Parameters
• data (dict) – data sampled from dataloader.

• training (bool) – Whether to enable training time augmentation. If subclasses override
this method, they can perform different preprocessing strategies for training and testing
based on the value of training.

Returns Data in the same format as the model input.

Return type Tuple[torch.Tensor, Optional[list]]

class mmselfsup.models.utils.RotationPredDataPreprocessor(mean: Optional[Sequence[Union[int,
float]]] = None, std:
Optional[Sequence[Union[int, float]]] =
None, pad_size_divisor: int = 1,
pad_value: Union[float, int] = 0,
bgr_to_rgb: bool = False, rgb_to_bgr:
bool = False, non_blocking:
Optional[bool] = False)

Image pre-processor for Relative Location.

forward(data: dict, training: bool = False)→ Tuple[List[torch.Tensor], Optional[list]]
Performs normalizationpadding and bgr2rgb conversion based on BaseDataPreprocessor.

Parameters
• data (dict) – data sampled from dataloader.

234 Chapter 37. mmselfsup.models

MMSelfSup, Release 1.0.0rc6

• training (bool) – Whether to enable training time augmentation. If subclasses override
this method, they can perform different preprocessing strategies for training and testing
based on the value of training.

Returns Data in the same format as the model input.

Return type Tuple[torch.Tensor, Optional[list]]

class mmselfsup.models.utils.SelfSupDataPreprocessor(mean: Optional[Sequence[Union[int, float]]]
= None, std: Optional[Sequence[Union[int,
float]]] = None, pad_size_divisor: int = 1,
pad_value: Union[float, int] = 0, bgr_to_rgb:
bool = False, rgb_to_bgr: bool = False,
non_blocking: Optional[bool] = False)

Image pre-processor for operations, like normalization and bgr to rgb.

Compared with the mmengine.ImgDataPreprocessor, this module treats each item in inputs of input data as
a list, instead of torch.Tensor.

forward(data: dict, training: bool = False)→ Tuple[List[torch.Tensor], Optional[list]]
Performs normalizationpadding and bgr2rgb conversion based on BaseDataPreprocessor.

Parameters
• data (dict) – data sampled from dataloader.

• training (bool) – Whether to enable training time augmentation. If subclasses override
this method, they can perform different preprocessing strategies for training and testing
based on the value of training.

Returns Data in the same format as the model input.

Return type Tuple[torch.Tensor, Optional[list]]

class mmselfsup.models.utils.Sobel
Sobel layer.

The layer reduces channels from 3 to 2.

forward(x: torch.Tensor)→ torch.Tensor
Run sobel layer.

class mmselfsup.models.utils.TransformerEncoderLayer(embed_dims: int, num_heads: int,
feedforward_channels: int, window_size:
Optional[int] = None, drop_rate: float = 0.0,
attn_drop_rate: float = 0.0, drop_path_rate:
float = 0.0, num_fcs: int = 2, qkv_bias: bool =
True, act_cfg: dict = {'type': 'GELU'},
norm_cfg: dict = {'type': 'LN'}, init_values:
float = 0.0, init_cfg: Optional[dict] = None)

Implements one encoder layer in Vision Transformer.

This module is the rewritten version of the TransformerEncoderLayer in MMClassification by adding the gamma
and relative position bias in Attention module.

Parameters
• embed_dims (int) – The feature dimension.

• num_heads (int) – Parallel attention heads

• feedforward_channels (int) – The hidden dimension for FFNs

37.8. utils 235

MMSelfSup, Release 1.0.0rc6

• drop_rate (float) – Probability of an element to be zeroed after the feed forward layer.
Defaults to 0.

• attn_drop_rate (float) – The drop out rate for attention output weights. Defaults to 0.

• drop_path_rate (float) – Stochastic depth rate. Defaults to 0.

• num_fcs (int) – The number of fully-connected layers for FFNs. Defaults to 2.

• qkv_bias (bool) – enable bias for qkv if True. Defaults to True.

• act_cfg (dict) – The activation config for FFNs. Defaluts to dict(type='GELU').

• norm_cfg (dict) – Config dict for normalization layer. Defaults to dict(type='LN').

• init_values (float) – The init values of gamma. Defaults to 0.0.

• init_cfg (dict, optional) – Initialization config dict. Defaults to None.

forward(x: torch.Tensor)→ torch.Tensor
Forward function.

class mmselfsup.models.utils.TwoNormDataPreprocessor(mean: Optional[Sequence[Union[int, float]]]
= None, std: Optional[Sequence[Union[int,
float]]] = None, second_mean:
Optional[Sequence[Union[int, float]]] = None,
second_std: Optional[Sequence[Union[int,
float]]] = None, pad_size_divisor: int = 1,
pad_value: Union[float, int] = 0, bgr_to_rgb:
bool = False, rgb_to_bgr: bool = False,
non_blocking: Optional[bool] = False)

Image pre-processor for CAE, BEiT v1/v2, etc.

Compared with the mmselfsup.SelfSupDataPreprocessor, this module will normalize the prediction image
and target image with different normalization parameters.

Parameters
• mean (Sequence[float or int], optional) – The pixel mean of image channels. If
bgr_to_rgb=True it means the mean value of R, G, B channels. If the length of mean is
1, it means all channels have the same mean value, or the input is a gray image. If it is not
specified, images will not be normalized. Defaults None.

• std (Sequence[float or int], optional) – The pixel standard deviation of image
channels. If bgr_to_rgb=True it means the standard deviation of R, G, B channels. If the
length of std is 1, it means all channels have the same standard deviation, or the input is a
gray image. If it is not specified, images will not be normalized. Defaults None.

• second_mean (Sequence[float or int], optional) – The description is like mean,
it can be customized for targe image. Defaults None.

• second_std (Sequence[float or int], optional) – The description is like std, it
can be customized for targe image. Defaults None.

• pad_size_divisor (int) – The size of padded image should be divisible by
pad_size_divisor. Defaults to 1.

• pad_value (float or int) – The padded pixel value. Defaults to 0.

• bgr_to_rgb (bool) – whether to convert image from BGR to RGB. Defaults to False.

• rgb_to_bgr (bool) – whether to convert image from RGB to RGB. Defaults to False.

• non_blocking (bool) – Whether block current process when transferring data to device.

236 Chapter 37. mmselfsup.models

MMSelfSup, Release 1.0.0rc6

forward(data: dict, training: bool = False)→ Tuple[List[torch.Tensor], Optional[list]]
Performs normalizationpadding and bgr2rgb conversion based on BaseDataPreprocessor.

Parameters
• data (dict) – data sampled from dataloader.

• training (bool) – Whether to enable training time augmentation. If subclasses override
this method, they can perform different preprocessing strategies for training and testing
based on the value of training.

Returns
Data in the same format as the model input.

Return type Tuple[torch.Tensor, Optional[list]]

class mmselfsup.models.utils.VideoDataPreprocessor(mean: Optional[Sequence[Union[int, float]]] =
None, std: Optional[Sequence[Union[int, float]]]
= None, pad_size_divisor: int = 1, pad_value:
Union[float, int] = 0, bgr_to_rgb: bool = False,
format_shape: str = 'NCHW')

Video pre-processor for operations, like normalization and bgr to rgb conversion .

Compared with the mmaction.ActionDataPreprocessor, this module treats each item in inputs of input data
as a list, instead of torch.Tensor.

Parameters
• mean (Sequence[float or int, optional) – The pixel mean of channels of images or

stacked optical flow. Defaults to None.

• std (Sequence[float or int], optional) – The pixel standard deviation of channels
of images or stacked optical flow. Defaults to None.

• pad_size_divisor (int) – The size of padded image should be divisible by
pad_size_divisor. Defaults to 1.

• pad_value (float or int) – The padded pixel value. Defaults to 0.

• bgr_to_rgb (bool) – Whether to convert image from BGR to RGB. Defaults to False.

• format_shape (str) – Format shape of input data. Defaults to 'NCHW'.

forward(data: dict, training: bool = False)→ Tuple[List[torch.Tensor], Optional[list]]
Performs normalizationpadding and bgr2rgb conversion based on BaseDataPreprocessor.

Parameters
• data (dict) – data sampled from dataloader.

• training (bool) – Whether to enable training time augmentation. If subclasses override
this method, they can perform different preprocessing strategies for training and testing
based on the value of training.

Returns
Data in the same format as the model input.

Return type Tuple[List[torch.Tensor], Optional[list]]

37.8. utils 237

MMSelfSup, Release 1.0.0rc6

mmselfsup.models.utils.build_2d_sincos_position_embedding(patches_resolution: Union[int,
Sequence[int]], embed_dims: int,
temperature: Optional[int] = 10000.0,
cls_token: Optional[bool] = False)→
torch.Tensor

The function is to build position embedding for model to obtain the position information of the image patches.

Parameters
• patches_resolution (Union[int, Sequence[int]]) – The resolution of each patch.

• embed_dims (int) – The dimension of the embedding vector.

• temperature (int, optional) – The temperature parameter. Defaults to 10000.

• cls_token (bool, optional) – Whether to concatenate class token. Defaults to False.

Returns The position embedding vector.

Return type torch.Tensor

mmselfsup.models.utils.build_clip_model(state_dict: dict, finetune: bool = False, average_targets: int =
1)→ torch.nn.modules.module.Module

Build the CLIP model.

Parameters
• state_dict (dict) – The pretrained state dict.

• finetune (bool) – Whether to fineturn the model.

• average_targets (bool) – Whether to average the target.

Returns The CLIP model.

Return type nn.Module

238 Chapter 37. mmselfsup.models

CHAPTER

THIRTYEIGHT

MMSELFSUP.STRUCTURES

class mmselfsup.structures.SelfSupDataSample(*, metainfo: Optional[dict] = None, **kwargs)
A data structure interface of MMSelfSup. They are used as interfaces between different components.

Meta field:

• img_shape (Tuple): The shape of the corresponding input image. Used for visualization.

• ori_shape (Tuple): The original shape of the corresponding image. Used for visualization.

• img_path (str): The path of original image.

Data field:

• gt_label (LabelData): The ground truth label of an image.

• sample_idx (InstanceData): The idx of an image in the dataset.

• mask (BaseDataElement): Mask used in masks image modeling.

• pred_label (LabelData): The predicted label.

• pseudo_label (InstanceData): Label used in pretext task, e.g. Relative Location.

Examples

>>> import torch
>>> import numpy as np
>>> from mmengine.structure import InstanceData
>>> from mmselfsup.structures import SelfSupDataSample

>>> data_sample = SelfSupDataSample()
>>> gt_label = LabelData()
>>> gt_label.value = [1]
>>> data_sample.gt_label = gt_label
>>> len(data_sample.gt_label)
1
>>> print(data_sample)
<SelfSupDataSample(

META INFORMATION
DATA FIELDS
gt_label: <InstanceData(

META INFORMATION
DATA FIELDS
value: [1]

(continues on next page)

239

MMSelfSup, Release 1.0.0rc6

(continued from previous page)

) at 0x7f15c08f9d10>
_gt_label: <InstanceData(

META INFORMATION
DATA FIELDS
value: [1]

) at 0x7f15c08f9d10>
) at 0x7f15c077ef10>

>>> idx = InstanceData()
>>> idx.value = [0]
>>> data_sample = SelfSupDataSample(idx=idx)
>>> assert 'idx' in data_sample

>>> data_sample = SelfSupDataSample()
>>> mask = dict(value=np.random.rand(48, 48))
>>> mask = PixelData(**mask)
>>> data_sample.mask = mask
>>> assert 'mask' in data_sample
>>> assert 'value' in data_sample.mask

>>> data_sample = SelfSupDataSample()
>>> pred_label = dict(pred_label=[3])
>>> pred_label = LabelData(**pred_label)
>>> data_sample.pred_label = pred_label
>>> print(data_sample)
<SelfSupDataSample(

META INFORMATION
DATA FIELDS
_pred_label: <InstanceData(

META INFORMATION
DATA FIELDS
pred_label: [3]

) at 0x7f15c06a3990>
pred_label: <InstanceData(

META INFORMATION
DATA FIELDS
pred_label: [3]

) at 0x7f15c06a3990>
) at 0x7f15c07b8bd0>

240 Chapter 38. mmselfsup.structures

CHAPTER

THIRTYNINE

MMSELFSUP.VISUALIZATION

class mmselfsup.visualization.SelfSupVisualizer(name: str = 'visualizer', image:
Optional[numpy.ndarray] = None, vis_backends:
Optional[List[Dict]] = None, save_dir: Optional[str]
= None, line_width: Union[int, float] = 3, alpha:
Union[int, float] = 0.8)

MMSelfSup Visualizer.

Parameters
• name (str) – Name of the instance. Defaults to ‘visualizer’.

• image (np.ndarray, optional) – the origin image to draw. The format should be RGB.
Defaults to None.

• vis_backends (list, optional) – Visual backend config list. Defaults to None.

• save_dir (str, optional) – Save file dir for all storage backends. If it is None, the
backend storage will not save any data.

• line_width (int, float) – The linewidth of lines. Defaults to 3.

• alpha (int, float) – The transparency of boxes or mask. Defaults to 0.8.

Examples

>>> import numpy as np
>>> import torch
>>> from mmengine.structures import InstanceData
>>> from mmselfsup.structures import SelfSupDataSample
>>> from mmselfsup.visualization import SelfSupVisualizer

>>> selfsup_visualizer = SelfSupVisualizer()
>>> image = np.random.randint(0, 256,
... size=(10, 12, 3)).astype('uint8')
>>> pseudo_label = InstanceData()
>>> pseudo_label.patch_box = torch.Tensor([[1, 2, 2, 5]])
>>> gt_selfsup_data_sample = SelfSupDataSample()
>>> gt_selfsup_data_sample.pseudo_label = pseudo_label
>>> selfsup_visualizer.add_datasample('image', image,
... gt_selfsup_data_sample)
>>> selfsup_visualizer.add_datasample(
... 'image', image, gt_selfsup_data_sample,

(continues on next page)

241

MMSelfSup, Release 1.0.0rc6

(continued from previous page)

... out_file='out_file.jpg')
>>> selfsup_visualizer.add_datasample(
... 'image', image, gt_selfsup_data_sample,
... show=True)
>>> pseudo_label = InstanceData()
>>> pseudo_label.patch_box = torch.Tensor([[1, 2, 2, 5]])
>>> pred_selfsup_data_sample = SelfSupDataSample()
>>> pred_selfsup_data_sample.pseudo_label = pseudo_label
>>> selfsup_visualizer.add_datasample('image', image,
... gt_selfsup_data_sample,
... pred_selfsup_data_sample)

add_datasample(name: str, image: numpy.ndarray, gt_sample:
Optional[mmselfsup.structures.selfsup_data_sample.SelfSupDataSample] = None,
pred_sample: Optional[mmselfsup.structures.selfsup_data_sample.SelfSupDataSample] =
None, draw_gt: bool = True, draw_pred: bool = True, show: bool = False, wait_time: float
= 0, out_file: Optional[str] = None, step: int = 0)→ None

Draw datasample and save to all backends.

• If GT and prediction are plotted at the same time, they are displayed in a stitched image where the left
image is the ground truth and the right image is the prediction.

• If show is True, all storage backends are ignored, and the images will be displayed in a local window.

• If out_file is specified, the drawn image will be saved to out_file. t is usually used when the
display is not available.

Parameters
• name (str) – The image identifier.

• image (np.ndarray) – The image to draw.

• gt_sample (SelfSupDataSample, optional) – GT SelfSupDataSample. Defaults to
None.

• pred_sample (SelfSupDataSample, optional) – Prediction SelfSupDataSample. De-
faults to None.

• draw_gt (bool) – Whether to draw GT SelfSupDataSample. Default to True.

• draw_pred (bool) – Whether to draw Prediction SelfSupDataSample. Defaults to True.

• show (bool) – Whether to display the drawn image. Default to False.

• wait_time (float) – The interval of show (s). Defaults to 0.

• out_file (str) – Path to output file. Defaults to None.

• step (int) – Global step value to record. Defaults to 0.

242 Chapter 39. mmselfsup.visualization

CHAPTER

FORTY

MMSELFSUP.UTILS

class mmselfsup.utils.AliasMethod(probs: torch.Tensor)
The alias method for sampling.

From: https://hips.seas.harvard.edu/blog/2013/03/03/the-alias-method-efficient-sampling-with-many-discrete-outcomes/

Parameters probs (torch.Tensor) – Sampling probabilities.

draw(N: int)→ None
Draw N samples from multinomial.

Parameters N (int) – Number of samples.

Returns Samples.

Return type torch.Tensor

mmselfsup.utils.batch_shuffle_ddp(x: torch.Tensor)→ Tuple[torch.Tensor, torch.Tensor]
Batch shuffle, for making use of BatchNorm.

Parameters x (torch.Tensor) – Data in each GPU.

Returns
Output of shuffle operation.

• x_gather[idx_this]: Shuffled data.

• idx_unshuffle: Index for restoring.

Return type Tuple[torch.Tensor, torch.Tensor]

mmselfsup.utils.batch_unshuffle_ddp(x: torch.Tensor, idx_unshuffle: torch.Tensor)→ torch.Tensor
Undo batch shuffle.

Parameters
• x (torch.Tensor) – Data in each GPU.

• idx_unshuffle (torch.Tensor) – Index for restoring.

Returns Output of unshuffle operation.

Return type torch.Tensor

mmselfsup.utils.collect_env()
Collect the information of the running environments.

mmselfsup.utils.concat_all_gather(tensor: torch.Tensor)→ torch.Tensor
Performs all_gather operation on the provided tensors.

Parameters tensor (torch.Tensor) – Tensor to be broadcast from current process.

243

https://hips.seas.harvard.edu/blog/2013/03/03/the-alias-method-efficient-sampling-with-many-discrete-outcomes/

MMSelfSup, Release 1.0.0rc6

Returns The concatnated tensor.

Return type torch.Tensor

mmselfsup.utils.dist_forward_collect(func: object, data_loader: torch.utils.data.dataloader.DataLoader,
length: int)→ dict

Forward and collect network outputs in a distributed manner.

This function performs forward propagation and collects outputs. It can be used to collect results, features, losses,
etc.

Parameters
• func (function) – The function to process data.

• data_loader (DataLoader) – the torch DataLoader to yield data.

• length (int) – Expected length of output arrays.

Returns The collected outputs.

Return type Dict[str, torch.Tensor]

mmselfsup.utils.distributed_sinkhorn(out: torch.Tensor, sinkhorn_iterations: int, world_size: int, epsilon:
float)→ torch.Tensor

Apply the distributed sinknorn optimization on the scores matrix to find the assignments.

Parameters
• out (torch.Tensor) – The scores matrix

• sinkhorn_iterations (int) – Number of iterations in Sinkhorn-Knopp algorithm.

• world_size (int) – The world size of the process group.

• epsilon (float) – regularization parameter for Sinkhorn-Knopp algorithm.

Returns Output of sinkhorn algorithm.

Return type torch.Tensor

mmselfsup.utils.get_model(model: torch.nn.modules.module.Module)→
mmengine.model.base_model.base_model.BaseModel

Get model if the input model is a model wrapper.

Parameters model (nn.Module) – A model may be a model wrapper.

Returns The model without model wrapper.

Return type BaseModel

mmselfsup.utils.nondist_forward_collect(func: object, data_loader:
torch.utils.data.dataloader.DataLoader, length: int)→ dict

Forward and collect network outputs.

This function performs forward propagation and collects outputs. It can be used to collect results, features, losses,
etc.

Parameters
• func (function) – The function to process data.

• data_loader (DataLoader) – the torch DataLoader to yield data.

• length (int) – Expected length of output arrays.

Returns The concatenated outputs.

244 Chapter 40. mmselfsup.utils

MMSelfSup, Release 1.0.0rc6

Return type Dict[str, torch.Tensor]

mmselfsup.utils.register_all_modules(init_default_scope: bool = True)→ None
Register all modules in mmselfsup into the registries.

Parameters init_default_scope (bool) – Whether initialize the mmselfsup default scope. When
init_default_scope=True, the global default scope will be set to mmselfsup, and all registries
will build modules from mmselfsup’s registry node. To understand more about the registry,
please refer to https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/registry.
md Defaults to True.

245

https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/registry.md
https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/registry.md

MMSelfSup, Release 1.0.0rc6

246 Chapter 40. mmselfsup.utils

CHAPTER

FORTYONE

CONTRIBUTING TO MMSELFSUP

• Contributing to MMSelfSup

– Workflow

– Code style

∗ Python

∗ C++ and CUDA

Thanks for your interest in contributing to MMSelfSup! All kinds of contributions are welcome, including but not
limited to the following.

• Fix typo or bugs

• Add documentation or translate the documentation into other languages

• Add new features and components

41.1 Workflow

We recommend the potential contributors follow this workflow for contribution.

1. Fork and pull the latest MMSelfSup repository, follow get_started to setup the environment.

2. Checkout a new branch (do not use master/dev branch for PRs)

Please checkout a new branch from dev-1.x branch, you could follow the commands below:

git clone git@github.com:open-mmlab/mmselfsup.git
cd mmselfsup
git checkout dev-1.x
git checkout -b xxxx # xxxx is the name of new branch

3. Edit the related files follow the code style mentioned below

4. Use pre-commit hook to check and format your changes.

5. Commit your changes

6. Create a PR to merge it into dev-1.x branch

Note: If you plan to add some new features that involve large changes, it is encouraged to open an issue for discussion
first.

247

MMSelfSup, Release 1.0.0rc6

41.2 Code style

41.2.1 Python

We adopt PEP8 as the preferred code style.

We use the following tools for linting and formatting:

• flake8: A wrapper around some linter tools.

• isort: A Python utility to sort imports.

• yapf: A formatter for Python files.

• codespell: A Python utility to fix common misspellings in text files.

• mdformat: Mdformat is an opinionated Markdown formatter that can be used to enforce a consistent style in
Markdown files.

• docformatter: A formatter to format docstring.

Style configurations of yapf and isort can be found in setup.cfg.

We use pre-commit hook that checks and formats for flake8, yapf, isort, trailing whitespaces, markdown
files, fixes end-of-files, double-quoted-strings, python-encoding-pragma, mixed-line-ending, sorts
requirments.txt automatically on every commit. The config for a pre-commit hook is stored in .pre-commit-config.

After you clone the repository, you will need to install initialize pre-commit hook.

pip install -U pre-commit

From the repository folder

pre-commit install
pre-commit run

After this on every commit check code linters and formatter will be enforced.

Before you create a PR, make sure that your code lints and is formatted by yapf.

41.2.2 C++ and CUDA

We follow the Google C++ Style Guide.

248 Chapter 41. Contributing to MMSelfSup

https://www.python.org/dev/peps/pep-0008/
https://github.com/PyCQA/flake8
https://github.com/timothycrosley/isort
https://github.com/google/yapf
https://github.com/codespell-project/codespell
https://github.com/executablebooks/mdformat
https://github.com/myint/docformatter
https://pre-commit.com/
https://google.github.io/styleguide/cppguide.html

CHAPTER

FORTYTWO

CHANGELOG

42.1 MMSelfSup

42.1.1 v1.0.0rc6 (10/02/2023)

The master branch is still 0.x version and we will checkout a new 1.x branch to release 1.x version. The two versions
will be maintained simultaneously in the future.

We briefly list the major breaking changes here. Please refer to the migration guide for details and migration instruc-
tions.

Highlight

• Support MaskFeat with video dataset in projects/maskfeat_video/

• Translate documentation to Chinese.

New Features

• Support MaskFeat with video dataset in projects/maskfeat_video/ (#678)

Bug Fixes

• Fix distributed setting for shape bias (#689)

• Update link of beitv2 (#676)

• Pass param by explicitly setting location (#654)

• Update default_runtime.py (#681)

• Rename metafile.yaml to metafile.yml (#680)

• Fix bugs in configs/selfsup/eva/metafile.yaml (#669)

249

https://github.com/open-mmlab/mmselfsup/pull/678
https://github.com/open-mmlab/mmselfsup/pull/689
https://github.com/open-mmlab/mmselfsup/pull/676
https://github.com/open-mmlab/mmselfsup/pull/654
https://github.com/open-mmlab/mmselfsup/pull/681
https://github.com/open-mmlab/mmselfsup/pull/680
https://github.com/open-mmlab/mmselfsup/pull/669

MMSelfSup, Release 1.0.0rc6

Improvements

• Switch default branch to 1.x (#686)

• Update pre-commit (#685)

• Deprecate the support of python 3.6 (#657)

Docs

• Translate add_transforms.md and conventions.md (#674)

• Translate classification.md, detection.md, segmentation.md (#665)

• Update link of knn script (#661)

• Translate two docs (#653)

• Translate three docs (#651)

42.1.2 v1.0.0rc5 (30/12/2022)

The master branch is still 0.x version and we will checkout a new 1.x branch to release 1.x version. The two versions
will be maintained simultaneously in the future.

We briefly list the major breaking changes here. Please refer to the migration guide for details and migration instruc-
tions.

Highlight

• Support BEiT v2, MixMIM, EVA

• Support ShapeBias for model analysis

• Add Solution of FGIA ACCV 2022 (1st Place)

• Refactor t-SNE

New Features

• Support BEiT v2 (#627)

• Support MixMIM (#626)

• Support EVA (#632)

• Support ShapeBias metric (#635)

• Add convert scripts and instructions on seg and det (#621)

• Add pretraining for FGIA (#607)

250 Chapter 42. Changelog

https://github.com/open-mmlab/mmselfsup/pull/686
https://github.com/open-mmlab/mmselfsup/pull/685
https://github.com/open-mmlab/mmselfsup/pull/657
https://github.com/open-mmlab/mmselfsup/pull/674
https://github.com/open-mmlab/mmselfsup/pull/665
https://github.com/open-mmlab/mmselfsup/pull/661
https://github.com/open-mmlab/mmselfsup/pull/653
https://github.com/open-mmlab/mmselfsup/pull/651
https://github.com/open-mmlab/mmselfsup/pull/627
https://github.com/open-mmlab/mmselfsup/pull/626
https://github.com/open-mmlab/mmselfsup/pull/632
https://github.com/open-mmlab/mmselfsup/pull/635
https://github.com/open-mmlab/mmselfsup/pull/621
https://github.com/open-mmlab/mmselfsup/pull/607

MMSelfSup, Release 1.0.0rc6

Bug Fixes

• Change pseudo_collect to default_collect (#616)

• Fix the link of SimMIM 800pt 100ft (#622)

• Change map_location to cpu (#623)

• Fix import error (#631)

• Fix key error in configs (#630)

• Change np.int to int (#636)

• Fix knn multi-gpu bug (#634)

Improvements

• Refactor projects/ folder (#620)

• Refactor t-SNE (#629)

• Refactor CAE (#645)

• Refactor benchmark script and update files (#637)

Docs

• Update data_flow.md (#612)

• Update datasets.md (#633)

42.1.3 v1.0.0rc4 (07/12/2022)

The master branch is still 0.x version and we will checkout a new 1.x branch to release 1.x version. The two versions
will be maintained simultaneously in the future.

We briefly list the major breaking changes here. Please refer to the migration guide for details and migration instruc-
tions.

Highlight

• Support BEiT and MILAN

• Support low-level reconstruction visualization

New Features

• Support BEiT (#425)

• Support MILAN (#600)

• Support low-level reconstruction visualization (#570)

42.1. MMSelfSup 251

https://github.com/open-mmlab/mmselfsup/pull/616
https://github.com/open-mmlab/mmselfsup/pull/622
https://github.com/open-mmlab/mmselfsup/pull/623
https://github.com/open-mmlab/mmselfsup/pull/631
https://github.com/open-mmlab/mmselfsup/pull/630
https://github.com/open-mmlab/mmselfsup/pull/636
https://github.com/open-mmlab/mmselfsup/pull/634
https://github.com/open-mmlab/mmselfsup/pull/620
https://github.com/open-mmlab/mmselfsup/pull/629
https://github.com/open-mmlab/mmselfsup/pull/645
https://github.com/open-mmlab/mmselfsup/pull/637
https://github.com/open-mmlab/mmselfsup/pull/612
https://github.com/open-mmlab/mmselfsup/pull/633
https://github.com/open-mmlab/mmselfsup/pull/425
https://github.com/open-mmlab/mmselfsup/pull/600
https://github.com/open-mmlab/mmselfsup/pull/570

MMSelfSup, Release 1.0.0rc6

Bug Fixes

• Fix registry of data preprocessor (#603)

• Fix dependence and key bug (#611)

Improvements

• Refactor file io (#582))

• Add ‘./projects’ folder and an example (#586))

• Update CI and UT (#601))

Docs

• Update readthedocs rst and menu button (#572)

• Add readthedocs algorithm pages and fix some displaying error (#599)

42.1.4 v1.0.0rc3 (01/11/2022)

The master branch is still 0.x version and we will checkout a new 1.x branch to release 1.x version. The two versions
will be maintained simultaneously in the future.

We briefly list the major breaking changes here. Please refer to the migration guide for details and migration instruc-
tions.

Highlight

• Support MaskFeat

New Features

• Support MaskFeat (#494)

• Add Hog generator (#518)

Bug Fixes

• Fix fine-tuning config of MAE-H-448 (#509)

Improvements

• Refactor evaluation folder and related configs (#538))

• Refine configs (#547))

252 Chapter 42. Changelog

https://github.com/open-mmlab/mmselfsup/pull/603
https://github.com/open-mmlab/mmselfsup/pull/611
https://github.com/open-mmlab/mmselfsup/pull/582
https://github.com/open-mmlab/mmselfsup/pull/586
https://github.com/open-mmlab/mmselfsup/pull/601
https://github.com/open-mmlab/mmselfsup/pull/572
https://github.com/open-mmlab/mmselfsup/pull/599
https://github.com/open-mmlab/mmselfsup/pull/494
https://github.com/open-mmlab/mmselfsup/pull/518
https://github.com/open-mmlab/mmselfsup/pull/509
https://github.com/open-mmlab/mmselfsup/pull/538
https://github.com/open-mmlab/mmselfsup/pull/547

MMSelfSup, Release 1.0.0rc6

Docs

• Add custom dataset tutorial (#522)

• Refactor add_modules.md (#524)

• Translate some documentation to Chinese

42.1.5 v1.0.0rc2 (12/10/2022)

The master branch is still 0.x version and we will checkout a new 1.x branch to release 1.x version. The two versions
will be maintained simultaneously in the future.

We briefly list the major breaking changes here. Please refer to the migration guide for details and migration instruc-
tions.

Highlight

• Full support of MAE, SimMIM, MoCoV3.

New Features

• Full support of MAE (#483)

• Full support of SimMIM (#487)

• Full support of MoCoV3 (#496)

Bug Fixes

• Fix classification configs (#488)

• Fix MAE config name error (#498)

Improvements

• Refactor colab tutorial (#470))

• Update readthedocs requirements (#472)

• Update CI (#476)

• Refine mim_slurm_test.sh and mim_dist_test.sh for benchmarks (#477)

• Update Metafile format and content (#478)

42.1. MMSelfSup 253

https://github.com/open-mmlab/mmselfsup/pull/522
https://github.com/open-mmlab/mmselfsup/pull/524
https://github.com/open-mmlab/mmselfsup/pull/483
https://github.com/open-mmlab/mmselfsup/pull/487
https://github.com/open-mmlab/mmselfsup/pull/496
https://github.com/open-mmlab/mmselfsup/pull/488
https://github.com/open-mmlab/mmselfsup/pull/498
https://github.com/open-mmlab/mmselfsup/pull/470
https://github.com/open-mmlab/mmselfsup/pull/472
https://github.com/open-mmlab/mmselfsup/pull/476
https://github.com/open-mmlab/mmselfsup/pull/477
https://github.com/open-mmlab/mmselfsup/pull/478

MMSelfSup, Release 1.0.0rc6

Docs

• Add advanced_guides/engine.md (#454)

• Add advanced_guides/evaluation.md (#456)

• add advanced_guides/transforms.md (#463)

• Add dataset docs (#437)

• Refine contribution guide (#492)

• update convention (#475)

42.1.6 v1.0.0rc1 (01/09/2022)

We are excited to announce the release of MMSelfSup v1.0.0rc1. MMSelfSup v1.0.0rc1 is the first version of MM-
SelfSup 1.x, a part of the OpenMMLab 2.0 projects. The master branch is still 0.x version and we will checkout a
new 1.x branch to release 1.x version. The two versions will be maintained simultaneously in the future.

We briefly list the major breaking changes here. Please refer to the migration guide for details and migration instruc-
tions.

Highlight

• Based on MMEngine and MMCV.

• Released with refactor.

– Datasets

– Models

– Config

– . . .

• Refine all documents.

New Features

• Add SelfSupDataSample to unify the components’ interface.

• Add SelfSupVisualizer for visualization.

• Add SelfSupDataPreprocessor for data preprocess in model.

Improvements

• Most algorithms now support non-distributed training.

• Change the interface of different data augmentation transforms to dict.

• Run classification downstream task with MMClassification.

254 Chapter 42. Changelog

https://github.com/open-mmlab/mmselfsup/pull/454
https://github.com/open-mmlab/mmselfsup/pull/456
https://github.com/open-mmlab/mmselfsup/pull/463
https://github.com/open-mmlab/mmselfsup/pull/437
https://github.com/open-mmlab/mmselfsup/pull/492
https://github.com/open-mmlab/mmselfsup/pull/475
https://github.com/open-mmlab/mmengine
https://github.com/open-mmlab/mmcv

MMSelfSup, Release 1.0.0rc6

Docs

• Refine all documents and reorganize the directory.

• Add concepts for different components.

42.1.7 v0.9.1 (31/05/2022)

Highlight

• Update BYOL model and results (#319)

• Refine some documentation

New Features

• Update BYOL models and results (#319)

Bug Fixes

• Set qkv bias to False for cae and True for mae (#303)

• Fix spelling errors in MAE config (#307)

Improvements

• Change the file name of cosine annealing hook (#304)

• Replace markdownlint with mdformat (#311)

Docs

• Fix typo in tutotial (#308)

• Configure Myst-parser to parse anchor tag (#309)

• Update readthedocs algorithm README (#310)

• Rewrite install.md (#317)

• refine README.md file (#318)

42.1.8 v0.9.0 (29/04/2022)

Highlight

• Support CAE (#284)

• Support Barlow Twins (#207)

42.1. MMSelfSup 255

https://github.com/open-mmlab/mmselfsup/pull/319
https://github.com/open-mmlab/mmselfsup/pull/319
https://github.com/open-mmlab/mmselfsup/pull/303
https://github.com/open-mmlab/mmselfsup/pull/307
https://github.com/open-mmlab/mmselfsup/pull/304
https://github.com/open-mmlab/mmselfsup/pull/311
https://github.com/open-mmlab/mmselfsup/pull/308
https://github.com/open-mmlab/mmselfsup/pull/309
https://github.com/open-mmlab/mmselfsup/pull/310
https://github.com/open-mmlab/mmselfsup/pull/317
https://github.com/open-mmlab/mmselfsup/pull/318
https://github.com/open-mmlab/mmselfsup/pull/284
https://github.com/open-mmlab/mmselfsup/pull/207

MMSelfSup, Release 1.0.0rc6

New Features

• Support CAE (#284)

• Support Barlow twins (#207)

• Add SimMIM 192 pretrain and 224 fine-tuning results (#280)

• Add MAE pretrain with fp16 (#271)

Bug Fixes

• Fix args error (#290)

• Change imgs_per_gpu to samples_per_gpu in MAE config (#278)

• Avoid GPU memory leak with prefetch dataloader (#277)

• Fix key error bug when registering custom hooks (#273)

Improvements

• Update SimCLR models and results (#295)

• Reduce memory usage while running unit test (#291)

• Remove pytorch1.5 test (#288)

• Rename linear probing config file names (#281)

• add unit test for apis (#276)

Docs

• Fix SimMIM config link, and add SimMIM to model_zoo (#272)

42.1.9 v0.8.0 (31/03/2022)

Highlight

• Support SimMIM (#239)

• Add KNN benchmark, support KNN test with checkpoint and extracted backbone weights (#243)

• Support ImageNet-21k dataset (#225)

New Features

• Support SimMIM (#239)

• Add KNN benchmark, support KNN test with checkpoint and extracted backbone weights (#243)

• Support ImageNet-21k dataset (#225)

• Resume latest checkpoint automatically (#245)

256 Chapter 42. Changelog

https://github.com/open-mmlab/mmselfsup/pull/284
https://github.com/open-mmlab/mmselfsup/pull/207
https://github.com/open-mmlab/mmselfsup/pull/280
https://github.com/open-mmlab/mmselfsup/pull/271
https://github.com/open-mmlab/mmselfsup/pull/290
https://github.com/open-mmlab/mmselfsup/pull/278
https://github.com/open-mmlab/mmselfsup/pull/277
https://github.com/open-mmlab/mmselfsup/pull/273
https://github.com/open-mmlab/mmselfsup/pull/295
https://github.com/open-mmlab/mmselfsup/pull/291
https://github.com/open-mmlab/mmselfsup/pull/288
https://github.com/open-mmlab/mmselfsup/pull/281
https://github.com/open-mmlab/mmselfsup/pull/276
https://github.com/open-mmlab/mmselfsup/pull/272
https://github.com/open-mmlab/mmselfsup/pull/239
https://github.com/open-mmlab/mmselfsup/pull/243
https://github.com/open-mmlab/mmselfsup/pull/225
https://github.com/open-mmlab/mmselfsup/pull/239
https://github.com/open-mmlab/mmselfsup/pull/243
https://github.com/open-mmlab/mmselfsup/pull/225
https://github.com/open-mmlab/mmselfsup/pull/245

MMSelfSup, Release 1.0.0rc6

Bug Fixes

• Add seed to distributed sampler (#250)

• Fix positional parameter error in dist_test_svm_epoch.sh (#260)

• Fix ‘mkdir’ error in prepare_voc07_cls.sh (#261)

Improvements

• Update args format from command line (#253)

Docs

• Fix command errors in 6_benchmarks.md (#263)

• Translate 6_benchmarks.md to Chinese (#262)

42.1.10 v0.7.0 (03/03/2022)

Highlight

• Support MAE (#221)

• Add Places205 benchmarks (#210)

• Add test Windows in workflows (#215)

New Features

• Support MAE (#221)

• Add Places205 benchmarks (#210)

Bug Fixes

• Fix config typos for rotation prediction and deepcluster (#200)

• Fix image channel bgr/rgb bug and update benchmarks (#210)

• Fix the bug when using prefetch under multi-view methods (#218)

• Fix tsne ‘no init_cfg’ error (#222)

Improvements

• Deprecate imgs_per_gpu and use samples_per_gpu (#204)

• Update the installation of MMCV (#208)

• Add pre-commit hook for algo-readme and copyright (#213)

• Add test Windows in workflows (#215)

42.1. MMSelfSup 257

https://github.com/open-mmlab/mmselfsup/pull/250
https://github.com/open-mmlab/mmselfsup/pull/260
https://github.com/open-mmlab/mmselfsup/pull/261
https://github.com/open-mmlab/mmselfsup/pull/253
https://github.com/open-mmlab/mmselfsup/pull/263
https://github.com/open-mmlab/mmselfsup/pull/262
https://github.com/open-mmlab/mmselfsup/pull/221
https://github.com/open-mmlab/mmselfsup/pull/210
https://github.com/open-mmlab/mmselfsup/pull/215
https://github.com/open-mmlab/mmselfsup/pull/221
https://github.com/open-mmlab/mmselfsup/pull/210
https://github.com/open-mmlab/mmselfsup/pull/200
https://github.com/open-mmlab/mmselfsup/pull/210
https://github.com/open-mmlab/mmselfsup/pull/218
https://github.com/open-mmlab/mmselfsup/pull/222
https://github.com/open-mmlab/mmselfsup/pull/204
https://github.com/open-mmlab/mmselfsup/pull/208
https://github.com/open-mmlab/mmselfsup/pull/213
https://github.com/open-mmlab/mmselfsup/pull/215

MMSelfSup, Release 1.0.0rc6

Docs

• Translate 0_config.md into Chinese (#216)

• Reorganizing OpenMMLab projects and update algorithms in readme (#219)

42.1.11 v0.6.0 (02/02/2022)

Highlight

• Support vision transformer based MoCo v3 (#194)

• Speed up training and start time (#181)

• Support cpu training (#188)

New Features

• Support vision transformer based MoCo v3 (#194)

• Support cpu training (#188)

Bug Fixes

• Fix issue (#159, #160) related bugs (#161)

• Fix missing prob assignment in RandomAppliedTrans (#173)

• Fix bug of showing k-means losses (#182)

• Fix bug in non-distributed multi-gpu training/testing (#189)

• Fix bug when loading cifar dataset (#191)

• Fix dataset.evaluate args bug (#192)

Improvements

• Cancel previous runs that are not completed in CI (#145)

• Enhance MIM function (#152)

• Skip CI when some specific files were changed (#154)

• Add drop_last when building eval optimizer (#158)

• Deprecate the support for “python setup.py test” (#174)

• Speed up training and start time (#181)

• Upgrade isort to 5.10.1 (#184)

258 Chapter 42. Changelog

https://github.com/open-mmlab/mmselfsup/pull/216
https://github.com/open-mmlab/mmselfsup/pull/219
https://github.com/open-mmlab/mmselfsup/pull/194
https://github.com/open-mmlab/mmselfsup/pull/181
https://github.com/open-mmlab/mmselfsup/pull/188
https://github.com/open-mmlab/mmselfsup/pull/194
https://github.com/open-mmlab/mmselfsup/pull/188
https://github.com/open-mmlab/mmselfsup/issues/159
https://github.com/open-mmlab/mmselfsup/issues/160
https://github.com/open-mmlab/mmselfsup/pull/161
https://github.com/open-mmlab/mmselfsup/pull/173
https://github.com/open-mmlab/mmselfsup/pull/182
https://github.com/open-mmlab/mmselfsup/pull/189
https://github.com/open-mmlab/mmselfsup/pull/191
https://github.com/open-mmlab/mmselfsup/pull/192
https://github.com/open-mmlab/mmselfsup/pull/145
https://github.com/open-mmlab/mmselfsup/pull/152
https://github.com/open-mmlab/mmselfsup/pull/154
https://github.com/open-mmlab/mmselfsup/pull/158
https://github.com/open-mmlab/mmselfsup/pull/174
https://github.com/open-mmlab/mmselfsup/pull/181
https://github.com/open-mmlab/mmselfsup/pull/184

MMSelfSup, Release 1.0.0rc6

Docs

• Refactor the directory structure of docs (#146)

• Fix readthedocs (#148, #149, #153)

• Fix typos and dead links in some docs (#155, #180, #195)

• Update training logs and benchmark results in model zoo (#157, #165, #195)

• Update and translate some docs into Chinese (#163, #164, #165, #166, #167, #168, #169, #172, #176, #178,
#179)

• Update algorithm README with the new format (#177)

42.1.12 v0.5.0 (16/12/2021)

Highlight

• Released with code refactor.

• Add 3 new self-supervised learning algorithms.

• Support benchmarks with MMDet and MMSeg.

• Add comprehensive documents.

Refactor

• Merge redundant dataset files.

• Adapt to new version of MMCV and remove old version related codes.

• Inherit MMCV BaseModule.

• Optimize directory.

• Rename all config files.

New Features

• Add SwAV, SimSiam, DenseCL algorithms.

• Add t-SNE visualization tools.

• Support MMCV version fp16.

Benchmarks

• More benchmarking results, including classification, detection and segmentation.

• Support some new datasets in downstream tasks.

• Launch MMDet and MMSeg training with MIM.

42.1. MMSelfSup 259

https://github.com/open-mmlab/mmselfsup/pull/146
https://github.com/open-mmlab/mmselfsup/pull/148
https://github.com/open-mmlab/mmselfsup/pull/149
https://github.com/open-mmlab/mmselfsup/pull/153
https://github.com/open-mmlab/mmselfsup/pull/155
https://github.com/open-mmlab/mmselfsup/pull/180
https://github.com/open-mmlab/mmselfsup/pull/195
https://github.com/open-mmlab/mmselfsup/pull/157
https://github.com/open-mmlab/mmselfsup/pull/165
https://github.com/open-mmlab/mmselfsup/pull/195
https://github.com/open-mmlab/mmselfsup/pull/163
https://github.com/open-mmlab/mmselfsup/pull/164
https://github.com/open-mmlab/mmselfsup/pull/165
https://github.com/open-mmlab/mmselfsup/pull/166
https://github.com/open-mmlab/mmselfsup/pull/167
https://github.com/open-mmlab/mmselfsup/pull/168
https://github.com/open-mmlab/mmselfsup/pull/169
https://github.com/open-mmlab/mmselfsup/pull/172
https://github.com/open-mmlab/mmselfsup/pull/176
https://github.com/open-mmlab/mmselfsup/pull/178
https://github.com/open-mmlab/mmselfsup/pull/179
https://github.com/open-mmlab/mmselfsup/pull/177

MMSelfSup, Release 1.0.0rc6

Docs

• Refactor README, getting_started, install, model_zoo files.

• Add data_prepare file.

• Add comprehensive tutorials.

42.2 OpenSelfSup (History)

42.2.1 v0.3.0 (14/10/2020)

Highlight

• Support Mixed Precision Training

• Improvement of GaussianBlur doubles the training speed

• More benchmarking results

Bug Fixes

• Fix bugs in moco v2, now the results are reproducible.

• Fix bugs in byol.

New Features

• Mixed Precision Training

• Improvement of GaussianBlur doubles the training speed of MoCo V2, SimCLR, BYOL

• More benchmarking results, including Places, VOC, COCO

42.2.2 v0.2.0 (26/6/2020)

Highlights

• Support BYOL

• Support semi-supervised benchmarks

Bug Fixes

• Fix hash id in publish_model.py

260 Chapter 42. Changelog

MMSelfSup, Release 1.0.0rc6

New Features

• Support BYOL.

• Separate train and test scripts in linear/semi evaluation.

• Support semi-supevised benchmarks: benchmarks/dist_train_semi.sh.

• Move benchmarks related configs into configs/benchmarks/.

• Provide benchmarking results and model download links.

• Support updating network every several iterations.

• Support LARS optimizer with nesterov.

• Support excluding specific parameters from LARS adaptation and weight decay required in SimCLR and BYOL.

42.2. OpenSelfSup (History) 261

MMSelfSup, Release 1.0.0rc6

262 Chapter 42. Changelog

CHAPTER

FORTYTHREE

FAQ

We list some common troubles faced by many users and their corresponding solutions here. Feel free to enrich the list
if you find any frequent issues and have ways to help others to solve them. If the contents here do not cover your issue,
please create an issue using the provided templates and make sure you fill in all required information in the template.

• FAQ

– Installation

– DeepCluster on A100 GPU

43.1 Installation

Compatible MMEngine, MMCV, MMClassification, MMDetection and MMSegmentation versions are shown below.
Please install the correct version of them to avoid installation issues.

Note:
• MMDetection and MMSegmentation are optional.

• If you still have version problem, please create an issue and provide your package versions.

43.2 DeepCluster on A100 GPU

Problem: If you want to try DeepCluster algorithm on A100 GPU, use the faiss installed by pip will raise error, which
is mentioned in here.

Please install faiss by conda like this:

conda install -c pytorch faiss-gpu cudatoolkit=11.3

Also, you need to install PyTorch with the support of CUDA 11.3, and the faiss-gpu==1.7.2 requires python
3.6-3.8.

263

https://github.com/open-mmlab/mmselfsup/tree/master/.github/ISSUE_TEMPLATE
https://github.com/open-mmlab/mmselfsup/blob/main/configs/selfsup/deepcluster/README.md
https://github.com/facebookresearch/faiss/issues/2076

MMSelfSup, Release 1.0.0rc6

264 Chapter 43. FAQ

CHAPTER

FORTYFOUR

ENGLISH

265

MMSelfSup, Release 1.0.0rc6

266 Chapter 44. English

CHAPTER

FORTYFIVE

267

MMSelfSup, Release 1.0.0rc6

268 Chapter 45.

CHAPTER

FORTYSIX

INDICES AND TABLES

• genindex

• modindex

• search

269

MMSelfSup, Release 1.0.0rc6

270 Chapter 46. Indices and tables

PYTHON MODULE INDEX

m
mmselfsup.datasets, 155
mmselfsup.datasets.samplers, 167
mmselfsup.datasets.transforms, 157
mmselfsup.engine.hooks, 169
mmselfsup.engine.optimizers, 172
mmselfsup.evaluation.functional, 175
mmselfsup.models.algorithms, 177
mmselfsup.models.backbones, 195
mmselfsup.models.heads, 216
mmselfsup.models.losses, 223
mmselfsup.models.memories, 226
mmselfsup.models.necks, 207
mmselfsup.models.target_generators, 227
mmselfsup.models.utils, 229
mmselfsup.structures, 239
mmselfsup.utils, 243
mmselfsup.visualization, 241

271

MMSelfSup, Release 1.0.0rc6

272 Python Module Index

INDEX

A
add_datasample() (mmself-

sup.visualization.SelfSupVisualizer method),
242

add_params() (mmself-
sup.engine.optimizers.LearningRateDecayOptimWrapperConstructor
method), 172

after_train_epoch() (mmself-
sup.engine.hooks.DeepClusterHook method),
169

after_train_epoch() (mmself-
sup.engine.hooks.ODCHook method), 170

after_train_epoch() (mmself-
sup.engine.hooks.SwAVHook method), 171

after_train_iter() (mmself-
sup.engine.hooks.ODCHook method), 170

AliasMethod (class in mmselfsup.utils), 243
assign_labels() (mmself-

sup.datasets.DeepClusterImageNet method),
155

attention_masking() (mmself-
sup.models.backbones.MILANViT method),
199

avg_func() (mmselfsup.models.utils.CosineEMA
method), 230

AvgPool2dNeck (class in mmselfsup.models.necks), 207

B
backward() (mmselfsup.models.utils.GatherLayer static

method), 231
BarlowTwins (class in mmselfsup.models.algorithms),

178
BaseModel (class in mmselfsup.models.algorithms), 179
batch_shuffle_ddp() (in module mmselfsup.utils), 243
batch_unshuffle_ddp() (in module mmselfsup.utils),

243
before_run() (mmselfsup.engine.hooks.SwAVHook

method), 171
before_train() (mmself-

sup.engine.hooks.DeepClusterHook method),
169

before_train() (mmself-
sup.engine.hooks.DenseCLHook method),
170

before_train_epoch() (mmself-
sup.engine.hooks.SimSiamHook method),
171

before_train_epoch() (mmself-
sup.engine.hooks.SwAVHook method), 171

before_train_iter() (mmself-
sup.engine.hooks.DenseCLHook method),
170

before_train_iter() (mmself-
sup.engine.hooks.SimSiamHook method),
171

before_train_iter() (mmself-
sup.engine.hooks.SwAVHook method), 171

BEiT (class in mmselfsup.models.algorithms), 177
BEiTLoss (class in mmselfsup.models.losses), 223
BEiTMaskGenerator (class in mmself-

sup.datasets.transforms), 157
BEiTV1Head (class in mmselfsup.models.heads), 216
BEiTV2Head (class in mmselfsup.models.heads), 216
BEiTV2Neck (class in mmselfsup.models.necks), 207
BEiTViT (class in mmselfsup.models.backbones), 195
build_2d_sincos_position_embedding() (in mod-

ule mmselfsup.models.utils), 237
build_clip_model() (in module mmself-

sup.models.utils), 238
build_dataset() (in module mmselfsup.datasets), 157
BYOL (class in mmselfsup.models.algorithms), 177

C
CAE (class in mmselfsup.models.algorithms), 180
CAEDataPreprocessor (class in mmself-

sup.models.utils), 229
CAEHead (class in mmselfsup.models.heads), 217
CAELoss (class in mmselfsup.models.losses), 224
CAENeck (class in mmselfsup.models.necks), 208
CAETransformerRegressorLayer (class in mmself-

sup.models.utils), 229
CAEViT (class in mmselfsup.models.backbones), 196

273

MMSelfSup, Release 1.0.0rc6

CLIPGenerator (class in mmself-
sup.models.target_generators), 227

ClsBatchNormNeck (class in mmselfsup.models.necks),
209

ClsHead (class in mmselfsup.models.heads), 217
collect_env() (in module mmselfsup.utils), 243
ColorJitter (class in mmselfsup.datasets.transforms),

157
concat_all_gather() (in module mmselfsup.utils), 243
construct_target() (mmself-

sup.models.heads.MAEPretrainHead method),
219

ContrastiveHead (class in mmselfsup.models.heads),
218

CosineEMA (class in mmselfsup.models.utils), 230
CosineSimilarityLoss (class in mmself-

sup.models.losses), 224
CrossCorrelationLoss (class in mmself-

sup.models.losses), 224

D
deal_with_small_clusters() (mmself-

sup.models.memories.ODCMemory method),
227

decoder_norm (mmself-
sup.models.necks.MAEPretrainDecoder
property), 211

DeepCluster (class in mmselfsup.models.algorithms),
181

deepcluster() (mmself-
sup.engine.hooks.DeepClusterHook method),
169

DeepClusterHook (class in mmselfsup.engine.hooks),
169

DeepClusterImageNet (class in mmselfsup.datasets),
155

DeepClusterSampler (class in mmself-
sup.datasets.samplers), 167

DenseCL (class in mmselfsup.models.algorithms), 182
DenseCLHook (class in mmselfsup.engine.hooks), 170
DenseCLNeck (class in mmselfsup.models.necks), 209
dist_forward_collect() (in module mmselfsup.utils),

244
distributed_sinkhorn() (in module mmselfsup.utils),

244
draw() (mmselfsup.utils.AliasMethod method), 243

E
encode() (mmselfsup.models.target_generators.VQKD

method), 229
Encoder (class in mmselfsup.models.target_generators),

227
EVA (class in mmselfsup.models.algorithms), 184

evaluate() (mmselfsup.engine.hooks.DeepClusterHook
method), 169

evaluate() (mmselfsup.engine.hooks.ODCHook
method), 170

extract_feat() (mmself-
sup.models.algorithms.BarlowTwins method),
178

extract_feat() (mmself-
sup.models.algorithms.BaseModel method),
179

extract_feat() (mmselfsup.models.algorithms.BYOL
method), 178

extract_feat() (mmself-
sup.models.algorithms.DeepCluster method),
182

extract_feat() (mmself-
sup.models.algorithms.DenseCL method),
183

extract_feat() (mmselfsup.models.algorithms.MAE
method), 184

extract_feat() (mmself-
sup.models.algorithms.MaskFeat method),
186

extract_feat() (mmselfsup.models.algorithms.MoCo
method), 187

extract_feat() (mmself-
sup.models.algorithms.MoCoV3 method),
188

extract_feat() (mmselfsup.models.algorithms.NPID
method), 189

extract_feat() (mmselfsup.models.algorithms.ODC
method), 190

extract_feat() (mmself-
sup.models.algorithms.RelativeLoc method),
191

extract_feat() (mmself-
sup.models.algorithms.RotationPred method),
192

extract_feat() (mmself-
sup.models.algorithms.SimCLR method),
192

extract_feat() (mmself-
sup.models.algorithms.SimMIM method),
193

extract_feat() (mmself-
sup.models.algorithms.SimSiam method),
194

extract_feat() (mmselfsup.models.algorithms.SwAV
method), 194

Extractor (class in mmselfsup.models.utils), 231

F
forward() (mmselfsup.models.algorithms.BaseModel

method), 179

274 Index

MMSelfSup, Release 1.0.0rc6

forward() (mmselfsup.models.backbones.BEiTViT
method), 196

forward() (mmselfsup.models.backbones.CAEViT
method), 197

forward() (mmselfsup.models.backbones.MAEViT
method), 198

forward() (mmselfsup.models.backbones.MaskFeatViT
method), 201

forward() (mmselfsup.models.backbones.MILANViT
method), 199

forward() (mmselfsup.models.backbones.MixMIMTransformerPretrain
method), 202

forward() (mmselfsup.models.backbones.ResNet
method), 205

forward() (mmselfsup.models.backbones.ResNetSobel
method), 205

forward() (mmselfsup.models.backbones.SimMIMSwinTransformer
method), 206

forward() (mmselfsup.models.heads.BEiTV1Head
method), 216

forward() (mmselfsup.models.heads.BEiTV2Head
method), 217

forward() (mmselfsup.models.heads.CAEHead
method), 217

forward() (mmselfsup.models.heads.ClsHead method),
218

forward() (mmselfsup.models.heads.ContrastiveHead
method), 218

forward() (mmselfsup.models.heads.LatentCrossCorrelationHead
method), 219

forward() (mmselfsup.models.heads.LatentPredictHead
method), 219

forward() (mmselfsup.models.heads.MAEPretrainHead
method), 219

forward() (mmselfsup.models.heads.MaskFeatPretrainHead
method), 220

forward() (mmselfsup.models.heads.MILANPretrainHead
method), 220

forward() (mmselfsup.models.heads.MixMIMPretrainHead
method), 221

forward() (mmselfsup.models.heads.MoCoV3Head
method), 221

forward() (mmselfsup.models.heads.MultiClsHead
method), 222

forward() (mmselfsup.models.heads.SimMIMHead
method), 223

forward() (mmselfsup.models.heads.SwAVHead
method), 223

forward() (mmselfsup.models.losses.BEiTLoss
method), 223

forward() (mmselfsup.models.losses.CAELoss method),
224

forward() (mmselfsup.models.losses.CosineSimilarityLoss
method), 224

forward() (mmselfsup.models.losses.CrossCorrelationLoss
method), 224

forward() (mmselfsup.models.losses.MAEReconstructionLoss
method), 225

forward() (mmselfsup.models.losses.PixelReconstructionLoss
method), 225

forward() (mmselfsup.models.losses.SimMIMReconstructionLoss
method), 225

forward() (mmselfsup.models.losses.SwAVLoss
method), 226

forward() (mmselfsup.models.necks.AvgPool2dNeck
method), 207

forward() (mmselfsup.models.necks.BEiTV2Neck
method), 207

forward() (mmselfsup.models.necks.CAENeck method),
208

forward() (mmselfsup.models.necks.ClsBatchNormNeck
method), 209

forward() (mmselfsup.models.necks.DenseCLNeck
method), 209

forward() (mmselfsup.models.necks.LinearNeck
method), 210

forward() (mmselfsup.models.necks.MAEPretrainDecoder
method), 211

forward() (mmselfsup.models.necks.MILANPretrainDecoder
method), 212

forward() (mmselfsup.models.necks.MixMIMPretrainDecoder
method), 212

forward() (mmselfsup.models.necks.MoCoV2Neck
method), 213

forward() (mmselfsup.models.necks.NonLinearNeck
method), 214

forward() (mmselfsup.models.necks.ODCNeck method),
214

forward() (mmselfsup.models.necks.RelativeLocNeck
method), 215

forward() (mmselfsup.models.necks.SimMIMNeck
method), 215

forward() (mmselfsup.models.necks.SwAVNeck
method), 216

forward() (mmselfsup.models.target_generators.CLIPGenerator
method), 227

forward() (mmselfsup.models.target_generators.Encoder
method), 227

forward() (mmselfsup.models.target_generators.HOGGenerator
method), 228

forward() (mmselfsup.models.target_generators.VQKD
method), 229

forward() (mmselfsup.models.utils.CAEDataPreprocessor
method), 229

forward() (mmselfsup.models.utils.CAETransformerRegressorLayer
method), 230

forward() (mmselfsup.models.utils.GatherLayer static
method), 231

Index 275

MMSelfSup, Release 1.0.0rc6

forward() (mmselfsup.models.utils.MultiheadAttention
method), 232

forward() (mmselfsup.models.utils.MultiPooling
method), 232

forward() (mmselfsup.models.utils.MultiPrototypes
method), 232

forward() (mmselfsup.models.utils.NormEMAVectorQuantizer
method), 233

forward() (mmselfsup.models.utils.PromptTransformerEncoderLayer
method), 234

forward() (mmselfsup.models.utils.RelativeLocDataPreprocessor
method), 234

forward() (mmselfsup.models.utils.RotationPredDataPreprocessor
method), 234

forward() (mmselfsup.models.utils.SelfSupDataPreprocessor
method), 235

forward() (mmselfsup.models.utils.Sobel method), 235
forward() (mmselfsup.models.utils.TransformerEncoderLayer

method), 236
forward() (mmselfsup.models.utils.TwoNormDataPreprocessor

method), 236
forward() (mmselfsup.models.utils.VideoDataPreprocessor

method), 237
forward_projection() (mmself-

sup.models.necks.SwAVNeck method), 216

G
GatherLayer (class in mmselfsup.models.utils), 231
generate_hog_image() (mmself-

sup.models.target_generators.HOGGenerator
method), 228

get_gaussian_kernel() (mmself-
sup.models.target_generators.HOGGenerator
method), 228

get_model() (in module mmselfsup.utils), 244
get_params() (mmself-

sup.datasets.transforms.ColorJitter static
method), 158

get_params() (mmself-
sup.datasets.transforms.RandomCrop static
method), 161

get_params() (mmself-
sup.datasets.transforms.RandomResizedCrop
static method), 163

get_params() (mmself-
sup.datasets.transforms.RandomResizedCropAndInterpolationWithTwoPic
static method), 164

get_params() (mmself-
sup.datasets.transforms.RandomRotation
static method), 165

get_shape() (mmself-
sup.datasets.transforms.BEiTMaskGenerator
method), 157

get_tokens() (mmself-
sup.models.target_generators.VQKD method),
229

H
HOGGenerator (class in mmself-

sup.models.target_generators), 228

I
ImageList (class in mmselfsup.datasets), 155
init_memory() (mmself-

sup.models.memories.ODCMemory method),
227

init_weights() (mmselfsup.models.algorithms.CAE
method), 181

init_weights() (mmself-
sup.models.backbones.BEiTViT method),
196

init_weights() (mmself-
sup.models.backbones.CAEViT method),
197

init_weights() (mmself-
sup.models.backbones.MAEViT method),
199

init_weights() (mmself-
sup.models.backbones.MaskFeatViT method),
201

init_weights() (mmself-
sup.models.backbones.MixMIMTransformerPretrain
method), 202

init_weights() (mmself-
sup.models.backbones.MoCoV3ViT method),
203

init_weights() (mmself-
sup.models.backbones.SimMIMSwinTransformer
method), 207

init_weights() (mmselfsup.models.necks.CAENeck
method), 209

init_weights() (mmself-
sup.models.necks.MAEPretrainDecoder
method), 211

init_weights() (mmself-
sup.models.necks.MixMIMPretrainDecoder
method), 213

K
knn_eval() (in module mmself-

sup.evaluation.functional), 175

L
LARS (class in mmselfsup.engine.optimizers), 172
LatentCrossCorrelationHead (class in mmself-

sup.models.heads), 218

276 Index

MMSelfSup, Release 1.0.0rc6

LatentPredictHead (class in mmself-
sup.models.heads), 219

LearningRateDecayOptimWrapperConstructor
(class in mmselfsup.engine.optimizers), 172

LinearNeck (class in mmselfsup.models.necks), 209
load_data_list() (mmselfsup.datasets.ImageList

method), 156
logits() (mmselfsup.models.heads.ClsHead method),

218
loss() (mmselfsup.models.algorithms.BarlowTwins

method), 178
loss() (mmselfsup.models.algorithms.BaseModel

method), 180
loss() (mmselfsup.models.algorithms.BEiT method),

177
loss() (mmselfsup.models.algorithms.BYOL method),

178
loss() (mmselfsup.models.algorithms.CAE method),

181
loss() (mmselfsup.models.algorithms.DeepCluster

method), 182
loss() (mmselfsup.models.algorithms.DenseCL

method), 183
loss() (mmselfsup.models.algorithms.EVA method), 184
loss() (mmselfsup.models.algorithms.MAE method),

184
loss() (mmselfsup.models.algorithms.MaskFeat

method), 186
loss() (mmselfsup.models.algorithms.MILAN method),

185
loss() (mmselfsup.models.algorithms.MixMIM

method), 186
loss() (mmselfsup.models.algorithms.MoCo method),

187
loss() (mmselfsup.models.algorithms.MoCoV3

method), 188
loss() (mmselfsup.models.algorithms.NPID method),

189
loss() (mmselfsup.models.algorithms.ODC method),

190
loss() (mmselfsup.models.algorithms.RelativeLoc

method), 191
loss() (mmselfsup.models.algorithms.RotationPred

method), 192
loss() (mmselfsup.models.algorithms.SimCLR method),

193
loss() (mmselfsup.models.algorithms.SimMIM method),

193
loss() (mmselfsup.models.algorithms.SimSiam method),

194
loss() (mmselfsup.models.algorithms.SwAV method),

195
loss() (mmselfsup.models.heads.MultiClsHead

method), 222

M
MAE (class in mmselfsup.models.algorithms), 184
MAEPretrainDecoder (class in mmself-

sup.models.necks), 210
MAEPretrainHead (class in mmselfsup.models.heads),

219
MAEReconstructionLoss (class in mmself-

sup.models.losses), 224
MAEViT (class in mmselfsup.models.backbones), 197
make_res_layer() (mmself-

sup.models.backbones.ResNeXt method),
204

MaskFeat (class in mmselfsup.models.algorithms), 185
MaskFeatPretrainHead (class in mmself-

sup.models.heads), 220
MaskFeatViT (class in mmselfsup.models.backbones),

200
MILAN (class in mmselfsup.models.algorithms), 185
MILANPretrainDecoder (class in mmself-

sup.models.necks), 211
MILANPretrainHead (class in mmself-

sup.models.heads), 220
MILANViT (class in mmselfsup.models.backbones), 199
MixMIM (class in mmselfsup.models.algorithms), 186
MixMIMPretrainDecoder (class in mmself-

sup.models.necks), 212
MixMIMPretrainHead (class in mmself-

sup.models.heads), 220
MixMIMTransformerPretrain (class in mmself-

sup.models.backbones), 201
mmselfsup.datasets

module, 155
mmselfsup.datasets.samplers

module, 167
mmselfsup.datasets.transforms

module, 157
mmselfsup.engine.hooks

module, 169
mmselfsup.engine.optimizers

module, 172
mmselfsup.evaluation.functional

module, 175
mmselfsup.models.algorithms

module, 177
mmselfsup.models.backbones

module, 195
mmselfsup.models.heads

module, 216
mmselfsup.models.losses

module, 223
mmselfsup.models.memories

module, 226
mmselfsup.models.necks

module, 207

Index 277

MMSelfSup, Release 1.0.0rc6

mmselfsup.models.target_generators
module, 227

mmselfsup.models.utils
module, 229

mmselfsup.structures
module, 239

mmselfsup.utils
module, 243

mmselfsup.visualization
module, 241

MoCo (class in mmselfsup.models.algorithms), 187
MoCoV2Neck (class in mmselfsup.models.necks), 213
MoCoV3 (class in mmselfsup.models.algorithms), 188
MoCoV3Head (class in mmselfsup.models.heads), 221
MoCoV3ViT (class in mmselfsup.models.backbones), 202
module

mmselfsup.datasets, 155
mmselfsup.datasets.samplers, 167
mmselfsup.datasets.transforms, 157
mmselfsup.engine.hooks, 169
mmselfsup.engine.optimizers, 172
mmselfsup.evaluation.functional, 175
mmselfsup.models.algorithms, 177
mmselfsup.models.backbones, 195
mmselfsup.models.heads, 216
mmselfsup.models.losses, 223
mmselfsup.models.memories, 226
mmselfsup.models.necks, 207
mmselfsup.models.target_generators, 227
mmselfsup.models.utils, 229
mmselfsup.structures, 239
mmselfsup.utils, 243
mmselfsup.visualization, 241

momentum_update() (mmself-
sup.models.algorithms.CAE method), 181

MultiClsHead (class in mmselfsup.models.heads), 221
MultiheadAttention (class in mmselfsup.models.utils),

232
MultiPooling (class in mmselfsup.models.utils), 231
MultiPrototypes (class in mmselfsup.models.utils),

232
MultiView (class in mmselfsup.datasets.transforms), 159

N
nondist_forward_collect() (in module mmself-

sup.utils), 244
NonLinearNeck (class in mmselfsup.models.necks), 213
NormEMAVectorQuantizer (class in mmself-

sup.models.utils), 232
NPID (class in mmselfsup.models.algorithms), 189

O
ODC (class in mmselfsup.models.algorithms), 190
ODCHook (class in mmselfsup.engine.hooks), 170

ODCMemory (class in mmselfsup.models.memories), 226
ODCNeck (class in mmselfsup.models.necks), 214
off_diagonal() (mmself-

sup.models.losses.CrossCorrelationLoss
method), 224

P
PackSelfSupInputs (class in mmself-

sup.datasets.transforms), 159
patchify() (mmselfsup.models.heads.MAEPretrainHead

method), 220
PixelReconstructionLoss (class in mmself-

sup.models.losses), 225
Places205 (class in mmselfsup.datasets), 156
predict() (mmselfsup.models.algorithms.BaseModel

method), 180
predict() (mmselfsup.models.algorithms.DeepCluster

method), 182
predict() (mmselfsup.models.algorithms.DenseCL

method), 184
predict() (mmselfsup.models.algorithms.ODC

method), 190
predict() (mmselfsup.models.algorithms.RelativeLoc

method), 191
predict() (mmselfsup.models.algorithms.RotationPred

method), 192
predict() (mmselfsup.models.heads.MultiClsHead

method), 222
prepare_data() (mmself-

sup.datasets.DeepClusterImageNet method),
155

PromptTransformerEncoderLayer (class in mmself-
sup.models.utils), 233

R
random_masking() (mmself-

sup.models.backbones.MAEViT method),
199

random_masking() (mmself-
sup.models.backbones.MixMIMTransformerPretrain
method), 202

RandomCrop (class in mmselfsup.datasets.transforms),
160

RandomGaussianBlur (class in mmself-
sup.datasets.transforms), 161

RandomPatchWithLabels (class in mmself-
sup.datasets.transforms), 162

RandomResizedCrop (class in mmself-
sup.datasets.transforms), 162

RandomResizedCropAndInterpolationWithTwoPic
(class in mmselfsup.datasets.transforms), 163

RandomRotation (class in mmself-
sup.datasets.transforms), 165

278 Index

MMSelfSup, Release 1.0.0rc6

RandomSolarize (class in mmself-
sup.datasets.transforms), 165

reconstruct() (mmselfsup.models.algorithms.MAE
method), 185

reconstruct() (mmself-
sup.models.algorithms.MaskFeat method),
186

reconstruct() (mmselfsup.models.algorithms.SimMIM
method), 193

register_all_modules() (in module mmselfsup.utils),
245

RelativeLoc (class in mmselfsup.models.algorithms),
191

RelativeLocDataPreprocessor (class in mmself-
sup.models.utils), 234

RelativeLocNeck (class in mmselfsup.models.necks),
214

rescale_init_weight() (mmself-
sup.models.backbones.BEiTViT method),
196

rescale_patch_aggregation_init_weight() (mm-
selfsup.models.necks.BEiTV2Neck method),
208

ResNet (class in mmselfsup.models.backbones), 204
ResNetSobel (class in mmselfsup.models.backbones),

205
ResNetV1d (class in mmselfsup.models.backbones), 205
ResNeXt (class in mmselfsup.models.backbones), 203
RotationPred (class in mmselfsup.models.algorithms),

192
RotationPredDataPreprocessor (class in mmself-

sup.models.utils), 234
RotationWithLabels (class in mmself-

sup.datasets.transforms), 166

S
SelfSupDataPreprocessor (class in mmself-

sup.models.utils), 235
SelfSupDataSample (class in mmselfsup.structures),

239
SelfSupVisualizer (class in mmselfsup.visualization),

241
set_algorithm_keys() (mmself-

sup.datasets.transforms.PackSelfSupInputs
class method), 160

set_reweight() (mmself-
sup.engine.hooks.DeepClusterHook method),
169

set_reweight() (mmselfsup.engine.hooks.ODCHook
method), 170

set_uniform_indices() (mmself-
sup.datasets.samplers.DeepClusterSampler
method), 167

SimCLR (class in mmselfsup.models.algorithms), 192

SimMIM (class in mmselfsup.models.algorithms), 193
SimMIMHead (class in mmselfsup.models.heads), 223
SimMIMMaskGenerator (class in mmself-

sup.datasets.transforms), 166
SimMIMNeck (class in mmselfsup.models.necks), 215
SimMIMReconstructionLoss (class in mmself-

sup.models.losses), 225
SimMIMSwinTransformer (class in mmself-

sup.models.backbones), 206
SimpleMemory (class in mmselfsup.models.memories),

227
SimSiam (class in mmselfsup.models.algorithms), 194
SimSiamHook (class in mmselfsup.engine.hooks), 170
Sobel (class in mmselfsup.models.utils), 235
step() (mmselfsup.engine.optimizers.LARS method),

172
SwAV (class in mmselfsup.models.algorithms), 194
SwAVHead (class in mmselfsup.models.heads), 223
SwAVHook (class in mmselfsup.engine.hooks), 171
SwAVLoss (class in mmselfsup.models.losses), 226
SwAVNeck (class in mmselfsup.models.necks), 215

T
train() (mmselfsup.models.backbones.MoCoV3ViT

method), 203
transform() (mmself-

sup.datasets.transforms.BEiTMaskGenerator
method), 157

transform() (mmself-
sup.datasets.transforms.ColorJitter method),
158

transform() (mmselfsup.datasets.transforms.MultiView
method), 159

transform() (mmself-
sup.datasets.transforms.PackSelfSupInputs
method), 160

transform() (mmself-
sup.datasets.transforms.RandomCrop method),
161

transform() (mmself-
sup.datasets.transforms.RandomGaussianBlur
method), 162

transform() (mmself-
sup.datasets.transforms.RandomPatchWithLabels
method), 162

transform() (mmself-
sup.datasets.transforms.RandomResizedCrop
method), 163

transform() (mmself-
sup.datasets.transforms.RandomResizedCropAndInterpolationWithTwoPic
method), 165

transform() (mmself-
sup.datasets.transforms.RandomRotation
method), 165

Index 279

MMSelfSup, Release 1.0.0rc6

transform() (mmself-
sup.datasets.transforms.RandomSolarize
method), 166

transform() (mmself-
sup.datasets.transforms.RotationWithLabels
method), 166

transform() (mmself-
sup.datasets.transforms.SimMIMMaskGenerator
method), 167

TransformerEncoderLayer (class in mmself-
sup.models.utils), 235

TwoNormDataPreprocessor (class in mmself-
sup.models.utils), 236

U
unpatchify() (mmself-

sup.models.heads.MAEPretrainHead method),
220

update() (mmselfsup.models.memories.SimpleMemory
method), 227

update_centroids_memory() (mmself-
sup.models.memories.ODCMemory method),
227

update_samples_memory() (mmself-
sup.models.memories.ODCMemory method),
227

V
VideoDataPreprocessor (class in mmself-

sup.models.utils), 237
VQKD (class in mmselfsup.models.target_generators), 228

W
with_head (mmselfsup.models.algorithms.BaseModel

property), 180
with_neck (mmselfsup.models.algorithms.BaseModel

property), 180
with_target_generator (mmself-

sup.models.algorithms.BaseModel property),
180

280 Index

	Overview
	Introduction of Self-supervised Learning
	Design of MMSelfSup
	Hands-on Roadmap of MMSelfSup
	Play with MMSelfSup
	Learn SSL with MMSelfSup

	Get Started
	Prerequisites
	Installation
	Best practices
	Install from source
	Install as a Python package

	Verify the installation
	Customize installation
	Benchmark
	CUDA versions
	Install MMEngine without MIM
	Install MMCV without MIM
	Install on CPU-only platforms
	Install on Google Colab
	Using MMSelfSup with Docker

	Trouble shooting

	Using Multiple MMSelfSup Versions

	Pretrain
	Tutorial 1: Learn about Configs
	Config File and Checkpoint Naming Convention
	Algorithm Information
	Module Information
	Training Information
	Data Information
	Config File Name Example

	Config File Structure
	Inherit and Modify Config File
	Use Intermediate Variables in Configs
	Ignore Some Fields in the Base Configs
	Reuse Some Fields in the Base Configs

	Modify Config through Script Arguments
	Import Modules from Other MM-Codebases

	Tutorial 2: Prepare Datasets
	Prepare ImageNet
	Prepare Place205
	Prepare iNaturalist2018
	Prepare PASCAL VOC
	Prepare CIFAR10
	Prepare datasets for detection and segmentation
	Detection
	Segmentation

	Tutorial 3: Pretrain with Existing Models
	Start to Train
	Train with a single GPU
	Train with CPU
	Train with multiple GPUs
	Train with multiple machines
	Launch multiple jobs on a single machine

	Tutorial 4: Pretrain with Custom Dataset
	Train MAE on Custom Dataset
	Step-1: Get the path of custom dataset
	Step-2: Choose one config as template
	Step-3: Edit the dataset related config

	Train MAE on COCO Dataset
	Train SimCLR on Custom Dataset
	Load pre-trained model to speedup convergence

	Downstream Tasks
	Classification
	VOC SVM / Low-shot SVM
	Linear Evaluation and Fine-tuning
	ImageNet Semi-Supervised Classification
	ImageNet Nearest-Neighbor Classification

	Detection
	Train
	Test

	Segmentation
	Train
	Test

	Useful Tools
	Visualization
	How visualization is implemented
	What Visualization do in MMSelfsup
	Use Different Storage Backends
	Customize Visualization
	Visualize Datasets
	Visualize t-SNE
	Visualize Low-level Feature Reconstruction
	Visualize Shape Bias
	Prepare the dataset
	Modify the config for classification
	Inference your model with above modified config file
	Plot shape bias

	Analysis tools
	Count number of parameters
	Publish a model
	Reproducibility
	Log Analysis

	Basic Concepts
	Data Flow
	Data flow between dataloader and model
	Data from dataset
	Data from dataloader
	Data from data preprocessor

	Structures
	Customized attributes in SelfSupDataSample
	Pack data to SelfSupDataSample in MMSelfSup

	Models
	Overview of modules in MMSelfSup
	Construct algorithms from sub-modules
	Overview these abstract functions in base model

	Datasets
	Datasets
	Refactor your datasets
	Use datasets from other MM-repos in your config

	Samplers
	Transforms

	Transforms
	Overview of transforms
	Introduction of MultiView
	Introduction of PackSelfSupInputs

	Evaluation
	Evaluation in MMEngine
	Online evaluation
	Offline evaluation

	Evaluation In MMSelfSup
	Customize Evaluation

	Engine
	Hook
	Introduction
	Default hooks
	Common Hooks implemented in MMEngine
	Hooks implemented in MMSelfsup

	Optimizer
	Optimizer
	Customize optimizer supported by PyTorch
	Parameter-wise configuration
	Implemented optimizers in MMSelfsup

	Optimizer wrapper
	Gradient clipping
	Gradient accumulation
	Automatic mixed precision(AMP) training

	Constructor
	Constructors implemented in MMSelfsup

	Conventions
	Losses

	Component Customization
	Add Modules
	Add a new backbone
	Add a new neck
	Add a new head
	Add a new loss
	Combine all

	Add Datasets
	Step 1: Creating the Dataset
	Step 2: Add NewDataset to __init__py
	Step 3: Modify the config file

	Add Transforms
	Overview of Pipeline
	Creating a new transform in Pipeline
	Step 1: Creating the transform
	Step 2: Add NewTransform to __init__py
	Step 3: Modify the config file

	Customize Runtime
	Loop
	Hook
	Step 1: Create a new hook
	Step 2: Import the new hook
	Step 3: Modify the config

	Optimizer
	Optimizer Wrapper
	Constructor

	Scheduler

	Model Zoo Statistics
	Model Zoo
	Benchmarks
	ImageNet

	BarlowTwins
	Abstract
	Models and Benchmarks
	Classification
	ImageNet Linear Evaluation
	ImageNet Nearest-Neighbor Classification

	Citation

	BEiT
	Abstract
	Models and Benchmarks
	Citation

	BEiT v2
	Abstract
	Models and Benchmarks
	Citation

	BYOL
	Abstract
	Models and Benchmarks
	Classification
	VOC SVM / Low-shot SVM
	ImageNet Linear Evaluation
	Places205 Linear Evaluation
	ImageNet Nearest-Neighbor Classification

	Detection
	Pascal VOC 2007 + 2012
	COCO2017

	Segmentation
	Pascal VOC 2012 + Aug

	Citation

	CAE
	Abstract
	Prerequisite
	Models and Benchmarks
	Citation

	DeepCluster
	Abstract
	Models and Benchmarks
	Classification
	VOC SVM / Low-shot SVM
	ImageNet Linear Evaluation
	Places205 Linear Evaluation

	Citation

	DenseCL
	Abstract
	Models and Benchmarks
	Classification
	VOC SVM / Low-shot SVM
	ImageNet Linear Evaluation
	Places205 Linear Evaluation
	ImageNet Nearest-Neighbor Classification

	Detection
	Pascal VOC 2007 + 2012
	COCO2017

	Segmentation
	Pascal VOC 2012 + Aug

	Citation

	EVA
	Abstract
	Models and Benchmarks
	Citation

	MAE
	Abstract
	Models and Benchmarks
	Evaluating MAE on Detection and Segmentation
	Citation

	MaskFeat
	Abstract
	Models and Benchmarks
	Citation

	MILAN
	Abstract
	Models and Benchmarks
	Citation

	MixMIM
	Abstract
	Models and Benchmarks
	Citation

	MoCo v1
	Abstract
	Citation

	MoCo v2
	Abstract
	Models and Benchmarks
	Classification
	VOC SVM / Low-shot SVM
	ImageNet Linear Evaluation
	Places205 Linear Evaluation
	ImageNet Nearest-Neighbor Classification

	Detection
	Pascal VOC 2007 + 2012
	COCO2017

	Segmentation
	Pascal VOC 2012 + Aug

	Citation

	MoCo v3
	Abstract
	Models and Benchmarks
	Citation

	NPID
	Abstract
	Results and Models
	Classification
	VOC SVM / Low-shot SVM
	ImageNet Linear Evaluation
	Places205 Linear Evaluation
	ImageNet Nearest-Neighbor Classification

	Detection
	Pascal VOC 2007 + 2012
	COCO2017

	Segmentation
	Pascal VOC 2012 + Aug

	Citation

	ODC
	Abstract
	Models and Benchmarks
	Classification
	VOC SVM / Low-shot SVM
	ImageNet Linear Evaluation
	Places205 Linear Evaluation
	ImageNet Nearest-Neighbor Classification

	Citation

	Relative Location
	Abstract
	Models and Benchmarks
	Classification
	VOC SVM / Low-shot SVM
	ImageNet Linear Evaluation
	Places205 Linear Evaluation
	ImageNet Nearest-Neighbor Classification

	Detection
	Pascal VOC 2007 + 2012
	COCO2017

	Segmentation
	Pascal VOC 2012 + Aug

	Citation

	Rotation Prediction
	Abstract
	Models and Benchmarks
	Classification
	VOC SVM / Low-shot SVM
	ImageNet Linear Evaluation
	Places205 Linear Evaluation
	ImageNet Nearest-Neighbor Classification

	Detection
	Pascal VOC 2007 + 2012
	COCO2017

	Segmentation
	Pascal VOC 2012 + Aug

	Citation

	SimCLR
	Abstract
	Results and Models
	Classification
	VOC SVM / Low-shot SVM
	ImageNet Linear Evaluation
	Places205 Linear Evaluation
	ImageNet Nearest-Neighbor Classification

	Detection
	Pascal VOC 2007 + 2012
	COCO2017

	Segmentation
	Pascal VOC 2012 + Aug

	Citation

	SimMIM
	Abstract
	Models and Benchmarks
	Citation

	SimSiam
	Abstract
	Models and Benchmarks
	Classification
	VOC SVM / Low-shot SVM
	ImageNet Linear Evaluation
	Places205 Linear Evaluation
	ImageNet Nearest-Neighbor Classification

	Detection
	Pascal VOC 2007 + 2012
	COCO2017

	Segmentation
	Pascal VOC 2012 + Aug

	Citation

	SwAV
	Abstract
	Models and Benchmarks
	Classification
	VOC SVM / Low-shot SVM
	ImageNet Linear Evaluation
	Places205 Linear Evaluation
	ImageNet Nearest-Neighbor Classification

	Detection
	Pascal VOC 2007 + 2012
	COCO2017

	Segmentation
	Pascal VOC 2012 + Aug

	Citation

	Migration
	Migration from MMSelfSup 0.x
	Config
	Datasets
	Models
	Schedules
	Runtime settings

	Package

	mmselfsup.datasets
	datasets
	transforms
	samplers

	mmselfsup.engine
	hooks
	optimizers

	mmselfsup.evaluation
	functional

	mmselfsup.models
	algorithms
	backbones
	necks
	heads
	losses
	memories
	target_generators
	utils

	mmselfsup.structures
	mmselfsup.visualization
	mmselfsup.utils
	Contributing to MMSelfSup
	Workflow
	Code style
	Python
	C++ and CUDA

	Changelog
	MMSelfSup
	v1.0.0rc6 (10/02/2023)
	Highlight
	New Features
	Bug Fixes
	Improvements
	Docs

	v1.0.0rc5 (30/12/2022)
	Highlight
	New Features
	Bug Fixes
	Improvements
	Docs

	v1.0.0rc4 (07/12/2022)
	Highlight
	New Features
	Bug Fixes
	Improvements
	Docs

	v1.0.0rc3 (01/11/2022)
	Highlight
	New Features
	Bug Fixes
	Improvements
	Docs

	v1.0.0rc2 (12/10/2022)
	Highlight
	New Features
	Bug Fixes
	Improvements
	Docs

	v1.0.0rc1 (01/09/2022)
	Highlight
	New Features
	Improvements
	Docs

	v0.9.1 (31/05/2022)
	Highlight
	New Features
	Bug Fixes
	Improvements
	Docs

	v0.9.0 (29/04/2022)
	Highlight
	New Features
	Bug Fixes
	Improvements
	Docs

	v0.8.0 (31/03/2022)
	Highlight
	New Features
	Bug Fixes
	Improvements
	Docs

	v0.7.0 (03/03/2022)
	Highlight
	New Features
	Bug Fixes
	Improvements
	Docs

	v0.6.0 (02/02/2022)
	Highlight
	New Features
	Bug Fixes
	Improvements
	Docs

	v0.5.0 (16/12/2021)
	Highlight
	Refactor
	New Features
	Benchmarks
	Docs

	OpenSelfSup (History)
	v0.3.0 (14/10/2020)
	Highlight
	Bug Fixes
	New Features

	v0.2.0 (26/6/2020)
	Highlights
	Bug Fixes
	New Features

	FAQ
	Installation
	DeepCluster on A100 GPU

	English
	简体中文
	Indices and tables
	Python Module Index
	Index

