Shortcuts

Note

You are reading the documentation for MMSelfSup 0.x, which will soon be deprecated by the end of 2022. We recommend you upgrade to MMSelfSup 1.0.0rc versions to enjoy fruitful new features and better performance brought by OpenMMLab 2.0. Check out the changelog, code and documentation of MMSelfSup 1.0.0rc for more details.

Source code for mmselfsup.datasets.pipelines.transforms

# Copyright (c) OpenMMLab. All rights reserved.
import inspect
import math
import random
import warnings
from typing import Optional, Sequence, Tuple, Union

import numpy as np
import torch
import torchvision.transforms.functional as F
from mmcv.utils import build_from_cfg
from PIL import Image, ImageFilter
from timm.data import create_transform
from torchvision import transforms as _transforms

from ..builder import PIPELINES

# register all existing transforms in torchvision
_EXCLUDED_TRANSFORMS = ['GaussianBlur']
for m in inspect.getmembers(_transforms, inspect.isclass):
    if m[0] not in _EXCLUDED_TRANSFORMS:
        PIPELINES.register_module(m[1])


[docs]@PIPELINES.register_module(force=True) class ToTensor(object): """Convert image or a sequence of images to tensor. This module can not only convert a single image to tensor, but also a sequence of images. """ def __init__(self) -> None: self.transform = _transforms.ToTensor() def __call__(self, imgs: Union[object, Sequence[object]]) -> torch.Tensor: if isinstance(imgs, Sequence): imgs = list(imgs) for i, img in enumerate(imgs): imgs[i] = self.transform(img) else: imgs = self.transform(imgs) return imgs
[docs]@PIPELINES.register_module() class SimMIMMaskGenerator(object): """Generate random block mask for each Image. This module is used in SimMIM to generate masks. Args: input_size (int): Size of input image. Defaults to 192. mask_patch_size (int): Size of each block mask. Defaults to 32. model_patch_size (int): Patch size of each token. Defaults to 4. mask_ratio (float): The mask ratio of image. Defaults to 0.6. """ def __init__(self, input_size: int = 192, mask_patch_size: int = 32, model_patch_size: int = 4, mask_ratio: float = 0.6) -> None: self.input_size = input_size self.mask_patch_size = mask_patch_size self.model_patch_size = model_patch_size self.mask_ratio = mask_ratio assert self.input_size % self.mask_patch_size == 0 assert self.mask_patch_size % self.model_patch_size == 0 self.rand_size = self.input_size // self.mask_patch_size self.scale = self.mask_patch_size // self.model_patch_size self.token_count = self.rand_size**2 self.mask_count = int(np.ceil(self.token_count * self.mask_ratio)) def __call__(self, img: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: mask_idx = np.random.permutation(self.token_count)[:self.mask_count] mask = np.zeros(self.token_count, dtype=int) mask[mask_idx] = 1 mask = mask.reshape((self.rand_size, self.rand_size)) mask = mask.repeat(self.scale, axis=0).repeat(self.scale, axis=1) mask = torch.from_numpy(mask) # H X W return img, mask
[docs]@PIPELINES.register_module() class BEiTMaskGenerator(object): """Generate mask for image. This module is borrowed from https://github.com/microsoft/unilm/tree/master/beit Args: input_size (int): The size of input image. num_masking_patches (int): The number of patches to be masked. min_num_patches (int): The minimum number of patches to be masked in the process of generating mask. Defaults to 4. max_num_patches (int, optional): The maximum number of patches to be masked in the process of generating mask. Defaults to None. min_aspect (float): The minimum aspect ratio of mask blocks. Defaults to 0.3. min_aspect (float, optional): The minimum aspect ratio of mask blocks. Defaults to None. """ def __init__(self, input_size: int, num_masking_patches: int, min_num_patches: int = 4, max_num_patches: Optional[int] = None, min_aspect: float = 0.3, max_aspect: Optional[float] = None) -> None: if not isinstance(input_size, tuple): input_size = (input_size, ) * 2 self.height, self.width = input_size self.num_patches = self.height * self.width self.num_masking_patches = num_masking_patches self.min_num_patches = min_num_patches self.max_num_patches = num_masking_patches if max_num_patches is None \ else max_num_patches max_aspect = max_aspect or 1 / min_aspect self.log_aspect_ratio = (math.log(min_aspect), math.log(max_aspect)) def __repr__(self) -> None: repr_str = 'Generator(%d, %d -> [%d ~ %d], max = %d, %.3f ~ %.3f)' % ( self.height, self.width, self.min_num_patches, self.max_num_patches, self.num_masking_patches, self.log_aspect_ratio[0], self.log_aspect_ratio[1]) return repr_str def get_shape(self) -> Tuple[int, int]: return self.height, self.width def _mask(self, mask: np.ndarray, max_mask_patches: int) -> int: delta = 0 for _ in range(10): target_area = random.uniform(self.min_num_patches, max_mask_patches) aspect_ratio = math.exp(random.uniform(*self.log_aspect_ratio)) h = int(round(math.sqrt(target_area * aspect_ratio))) w = int(round(math.sqrt(target_area / aspect_ratio))) if w < self.width and h < self.height: top = random.randint(0, self.height - h) left = random.randint(0, self.width - w) num_masked = mask[top:top + h, left:left + w].sum() # Overlap if 0 < h * w - num_masked <= max_mask_patches: for i in range(top, top + h): for j in range(left, left + w): if mask[i, j] == 0: mask[i, j] = 1 delta += 1 if delta > 0: break return delta def __call__( self, img: Tuple[torch.Tensor, torch.Tensor] ) -> Tuple[torch.Tensor, torch.Tensor, np.ndarray]: mask = np.zeros(shape=self.get_shape(), dtype=int) mask_count = 0 while mask_count != self.num_masking_patches: max_mask_patches = self.num_masking_patches - mask_count max_mask_patches = min(max_mask_patches, self.max_num_patches) delta = self._mask(mask, max_mask_patches) mask_count += delta return img[0], img[1], mask
@PIPELINES.register_module() class RandomResizedCropAndInterpolationWithTwoPic(object): """Crop the given PIL Image to random size and aspect ratio with random interpolation. This module is borrowed from https://github.com/microsoft/unilm/tree/master/beit. A crop of random size (default: of 0.08 to 1.0) of the original size and a random aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop is finally resized to given size. This is popularly used to train the Inception networks. This module first crops the image and resizes the crop to two different sizes. Args: size (Union[tuple, int]): Expected output size of each edge of the first image. second_size (Union[tuple, int], optional): Expected output size of each edge of the second image. scale (tuple[float, float]): Range of size of the origin size cropped. Defaults to (0.08, 1.0). ratio (tuple[float, float]): Range of aspect ratio of the origin aspect ratio cropped. Defaults to (3./4., 4./3.). interpolation (str): The interpolation for the first image. Defaults to ``bilinear``. second_interpolation (str): The interpolation for the second image. Defaults to ``lanczos``. """ interpolation_dict = { 'bicubic': Image.BICUBIC, 'lanczos': Image.LANCZOS, 'hamming': Image.HAMMING } def __init__(self, size: Union[tuple, int], second_size=None, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation='bilinear', second_interpolation='lanczos') -> None: if isinstance(size, tuple): self.size = size else: self.size = (size, size) if second_size is not None: if isinstance(second_size, tuple): self.second_size = second_size else: self.second_size = (second_size, second_size) else: self.second_size = None if (scale[0] > scale[1]) or (ratio[0] > ratio[1]): warnings.warn('range should be of kind (min, max)') if interpolation == 'random': self.interpolation = (Image.BILINEAR, Image.BICUBIC) else: self.interpolation = self.interpolation_dict.get( interpolation, Image.BILINEAR) self.second_interpolation = self.interpolation_dict.get( second_interpolation, Image.BILINEAR) self.scale = scale self.ratio = ratio @staticmethod def get_params(img: np.ndarray, scale: tuple, ratio: tuple) -> Sequence[int]: """Get parameters for ``crop`` for a random sized crop. Args: img (np.ndarray): Image to be cropped. scale (tuple): range of size of the origin size cropped ratio (tuple): range of aspect ratio of the origin aspect ratio cropped Returns: tuple: params (i, j, h, w) to be passed to ``crop`` for a random sized crop. """ area = img.size[0] * img.size[1] for _ in range(10): target_area = random.uniform(*scale) * area log_ratio = (math.log(ratio[0]), math.log(ratio[1])) aspect_ratio = math.exp(random.uniform(*log_ratio)) w = int(round(math.sqrt(target_area * aspect_ratio))) h = int(round(math.sqrt(target_area / aspect_ratio))) if w <= img.size[0] and h <= img.size[1]: i = random.randint(0, img.size[1] - h) j = random.randint(0, img.size[0] - w) return i, j, h, w # Fallback to central crop in_ratio = img.size[0] / img.size[1] if in_ratio < min(ratio): w = img.size[0] h = int(round(w / min(ratio))) elif in_ratio > max(ratio): h = img.size[1] w = int(round(h * max(ratio))) else: # whole image w = img.size[0] h = img.size[1] i = (img.size[1] - h) // 2 j = (img.size[0] - w) // 2 return i, j, h, w def __call__( self, img: np.ndarray ) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]: i, j, h, w = self.get_params(img, self.scale, self.ratio) if isinstance(self.interpolation, (tuple, list)): interpolation = random.choice(self.interpolation) else: interpolation = self.interpolation if self.second_size is None: return F.resized_crop(img, i, j, h, w, self.size, interpolation) else: return F.resized_crop(img, i, j, h, w, self.size, interpolation), F.resized_crop( img, i, j, h, w, self.second_size, self.second_interpolation)
[docs]@PIPELINES.register_module() class RandomAug(object): """RandAugment data augmentation method based on `"RandAugment: Practical automated data augmentation with a reduced search space" <https://arxiv.org/abs/1909.13719>`_. This code is borrowed from <https://github.com/pengzhiliang/MAE-pytorch> """ def __init__(self, input_size=None, color_jitter=None, auto_augment=None, interpolation=None, re_prob=None, re_mode=None, re_count=None, mean=None, std=None): self.trans = create_transform( input_size=input_size, is_training=True, color_jitter=color_jitter, auto_augment=auto_augment, interpolation=interpolation, re_prob=re_prob, re_mode=re_mode, re_count=re_count, mean=mean, std=std, ) def __call__(self, img): return self.trans(img) def __repr__(self) -> str: repr_str = self.__class__.__name__ return repr_str
[docs]@PIPELINES.register_module() class RandomAppliedTrans(object): """Randomly applied transformations. Args: transforms (list[dict]): List of transformations in dictionaries. p (float, optional): Probability. Defaults to 0.5. """ def __init__(self, transforms, p=0.5): t = [build_from_cfg(t, PIPELINES) for t in transforms] self.trans = _transforms.RandomApply(t, p=p) self.prob = p def __call__(self, img): return self.trans(img) def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'prob = {self.prob}' return repr_str
# custom transforms
[docs]@PIPELINES.register_module() class Lighting(object): """Lighting noise(AlexNet - style PCA - based noise). Args: alphastd (float, optional): The parameter for Lighting. Defaults to 0.1. """ _IMAGENET_PCA = { 'eigval': torch.Tensor([0.2175, 0.0188, 0.0045]), 'eigvec': torch.Tensor([ [-0.5675, 0.7192, 0.4009], [-0.5808, -0.0045, -0.8140], [-0.5836, -0.6948, 0.4203], ]) } def __init__(self, alphastd=0.1): self.alphastd = alphastd self.eigval = self._IMAGENET_PCA['eigval'] self.eigvec = self._IMAGENET_PCA['eigvec'] def __call__(self, img): assert isinstance(img, torch.Tensor), \ f'Expect torch.Tensor, got {type(img)}' if self.alphastd == 0: return img alpha = img.new().resize_(3).normal_(0, self.alphastd) rgb = self.eigvec.type_as(img).clone()\ .mul(alpha.view(1, 3).expand(3, 3))\ .mul(self.eigval.view(1, 3).expand(3, 3))\ .sum(1).squeeze() return img.add(rgb.view(3, 1, 1).expand_as(img)) def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'alphastd = {self.alphastd}' return repr_str
[docs]@PIPELINES.register_module() class GaussianBlur(object): """GaussianBlur augmentation refers to `SimCLR. <https://arxiv.org/abs/2002.05709>`_. Args: sigma_min (float): The minimum parameter of Gaussian kernel std. sigma_max (float): The maximum parameter of Gaussian kernel std. p (float, optional): Probability. Defaults to 0.5. """ def __init__(self, sigma_min, sigma_max, p=0.5): assert 0 <= p <= 1.0, \ f'The prob should be in range [0,1], got {p} instead.' self.sigma_min = sigma_min self.sigma_max = sigma_max self.prob = p def __call__(self, img): if np.random.rand() > self.prob: return img sigma = np.random.uniform(self.sigma_min, self.sigma_max) img = img.filter(ImageFilter.GaussianBlur(radius=sigma)) return img def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'sigma_min = {self.sigma_min}, ' repr_str += f'sigma_max = {self.sigma_max}, ' repr_str += f'prob = {self.prob}' return repr_str
[docs]@PIPELINES.register_module() class Solarization(object): """Solarization augmentation refers to `BYOL. <https://arxiv.org/abs/2006.07733>`_. Args: threshold (float, optional): The solarization threshold. Defaults to 128. p (float, optional): Probability. Defaults to 0.5. """ def __init__(self, threshold=128, p=0.5): assert 0 <= p <= 1.0, \ f'The prob should be in range [0, 1], got {p} instead.' self.threshold = threshold self.prob = p def __call__(self, img): if np.random.rand() > self.prob: return img img = np.array(img) img = np.where(img < self.threshold, img, 255 - img) return Image.fromarray(img.astype(np.uint8)) def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'threshold = {self.threshold}, ' repr_str += f'prob = {self.prob}' return repr_str
[docs]@PIPELINES.register_module() class MaskFeatMaskGenerator(object): """Generate random block mask for each image. This module is borrowed from https://github.com/facebookresearch/SlowFast/blob/main/slowfast/datasets/transform.py Args: mask_window_size (int): Size of input image. Defaults to 14. mask_ratio (float): The mask ratio of image. Defaults to 0.4. min_num_patches (int): Minimum number of patches that require masking. Defaults to 15. max_num_patches (int, optional): Maximum number of patches that require masking. Defaults to None. min_aspect (int): Minimum aspect of patches. Defaults to 0.3. max_aspect (float, optional): Maximum aspect of patches. Defaults to None. """ def __init__( self, mask_window_size: int = 14, mask_ratio: float = 0.4, min_num_patches: int = 15, max_num_patches: Optional[int] = None, min_aspect: float = 0.3, max_aspect: Optional[float] = None, ) -> None: self.height, self.width = mask_window_size, mask_window_size self.num_patches = self.height * self.width self.num_masking_patches = int(mask_window_size**2 * mask_ratio) self.min_num_patches = min_num_patches self.max_num_patches = ( self.num_masking_patches if max_num_patches is None else max_num_patches) max_aspect = max_aspect or 1 / min_aspect self.log_aspect_ratio = (math.log(min_aspect), math.log(max_aspect)) def __repr__(self) -> str: repr_str = self.__class__.__name__ repr_str += f'(height={self.height}, ' repr_str += f'width={self.width}, ' repr_str += f'num_patches={self.num_patches}, ' repr_str += f'num_masking_patches={self.num_masking_patches}, ' repr_str += f'min_num_patches={self.min_num_patches}, ' repr_str += f'max_num_patches={self.max_num_patches}, ' repr_str += f'log_aspect_ratio={self.log_aspect_ratio})' return repr_str def get_shape(self) -> Tuple[int, int]: return self.height, self.width def _random_masking(self, mask: np.array, max_mask_patches: int) -> int: """Generate random block masks for each image up to 10 times. Args: mask (np.array): Initial mask of shape (mask_window_size, mask_window_size). max_mask_patches (int): Maximum number of masked patches required. Returns: int: Number of masking patches. """ delta = 0 for _ in range(10): target_area = random.uniform(self.min_num_patches, max_mask_patches) aspect_ratio = math.exp(random.uniform(*self.log_aspect_ratio)) h = int(round(math.sqrt(target_area * aspect_ratio))) w = int(round(math.sqrt(target_area / aspect_ratio))) if w < self.width and h < self.height: top = random.randint(0, self.height - h) left = random.randint(0, self.width - w) num_masked = mask[top:top + h, left:left + w].sum() # Overlap if 0 < h * w - num_masked <= max_mask_patches: for i in range(top, top + h): for j in range(left, left + w): if mask[i, j] == 0: mask[i, j] = 1 delta += 1 if delta > 0: break return delta def __call__(self, img: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """Generate random block mask for each image. Args: img (torch.Tensor): Input image of shape (C, H, W). Returns: Tuple[torch.Tensor, torch.Tensor]: Input image and mask. """ mask = np.zeros(shape=self.get_shape(), dtype=int) mask_count = 0 while mask_count < self.num_masking_patches: max_mask_patches = self.num_masking_patches - mask_count max_mask_patches = min(max_mask_patches, self.max_num_patches) delta = self._random_masking(mask, max_mask_patches) if delta == 0: break else: mask_count += delta return img, torch.Tensor(mask).bool()
Read the Docs v: 0.x
Versions
latest
stable
1.x
dev-1.x
0.x
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.