Shortcuts

Note

You are reading the documentation for MMSelfSup 0.x, which will soon be deprecated by the end of 2022. We recommend you upgrade to MMSelfSup 1.0.0rc versions to enjoy fruitful new features and better performance brought by OpenMMLab 2.0. Check out the changelog, code and documentation of MMSelfSup 1.0.0rc for more details.

Source code for mmselfsup.models.backbones.mae_vit

# Copyright (c) OpenMMLab. All rights reserved.
import torch
from mmcls.models import VisionTransformer
from torch import nn

from ..builder import BACKBONES
from ..utils import build_2d_sincos_position_embedding


[docs]@BACKBONES.register_module() class MAEViT(VisionTransformer): """Vision Transformer for MAE pre-training. A PyTorch implement of: `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale <https://arxiv.org/abs/2010.11929>`_ Args: arch (str | dict): Vision Transformer architecture Default: 'b' img_size (int | tuple): Input image size patch_size (int | tuple): The patch size out_indices (Sequence | int): Output from which stages. Defaults to -1, means the last stage. drop_rate (float): Probability of an element to be zeroed. Defaults to 0. drop_path_rate (float): stochastic depth rate. Defaults to 0. norm_cfg (dict): Config dict for normalization layer. Defaults to ``dict(type='LN')``. final_norm (bool): Whether to add a additional layer to normalize final feature map. Defaults to True. output_cls_token (bool): Whether output the cls_token. If set True, `with_cls_token` must be True. Defaults to True. interpolate_mode (str): Select the interpolate mode for position embeding vector resize. Defaults to "bicubic". patch_cfg (dict): Configs of patch embeding. Defaults to an empty dict. layer_cfgs (Sequence | dict): Configs of each transformer layer in encoder. Defaults to an empty dict. mask_ratio (bool): The ratio of total number of patches to be masked. Defaults to 0.75. init_cfg (dict, optional): Initialization config dict. Defaults to None. """ def __init__(self, arch='b', img_size=224, patch_size=16, out_indices=-1, drop_rate=0, drop_path_rate=0, norm_cfg=dict(type='LN', eps=1e-6), final_norm=True, output_cls_token=True, interpolate_mode='bicubic', patch_cfg=dict(), layer_cfgs=dict(), mask_ratio=0.75, init_cfg=None): super().__init__( arch=arch, img_size=img_size, patch_size=patch_size, out_indices=out_indices, drop_rate=drop_rate, drop_path_rate=drop_path_rate, norm_cfg=norm_cfg, final_norm=final_norm, output_cls_token=output_cls_token, interpolate_mode=interpolate_mode, patch_cfg=patch_cfg, layer_cfgs=layer_cfgs, init_cfg=init_cfg) self.pos_embed.requires_grad = False self.mask_ratio = mask_ratio self.num_patches = self.patch_resolution[0] * self.patch_resolution[1]
[docs] def init_weights(self): super(MAEViT, self).init_weights() if not (isinstance(self.init_cfg, dict) and self.init_cfg['type'] == 'Pretrained'): # initialize position embedding in backbone pos_embed = build_2d_sincos_position_embedding( int(self.num_patches**.5), self.pos_embed.shape[-1], cls_token=True) self.pos_embed.data.copy_(pos_embed.float()) w = self.patch_embed.projection.weight.data torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1])) torch.nn.init.normal_(self.cls_token, std=.02) self.apply(self._init_weights)
def _init_weights(self, m): if isinstance(m, nn.Linear): torch.nn.init.xavier_uniform_(m.weight) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0)
[docs] def random_masking(self, x, mask_ratio=0.75): """Generate the mask for MAE Pre-training. Args: x (torch.tensor): Image with data augmentation applied. mask_ratio (float): The mask ratio of total patches. Defaults to 0.75. Returns: tuple[Tensor, Tensor, Tensor]: masked image, mask and the ids to restore original image. - x_masked (Tensor): masked image. - mask (Tensor): mask used to mask image. - ids_restore (Tensor): ids to restore original image. """ N, L, D = x.shape # batch, length, dim len_keep = int(L * (1 - mask_ratio)) noise = torch.rand(N, L, device=x.device) # noise in [0, 1] # sort noise for each sample ids_shuffle = torch.argsort( noise, dim=1) # ascend: small is keep, large is remove ids_restore = torch.argsort(ids_shuffle, dim=1) # keep the first subset ids_keep = ids_shuffle[:, :len_keep] x_masked = torch.gather( x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D)) # generate the binary mask: 0 is keep, 1 is remove mask = torch.ones([N, L], device=x.device) mask[:, :len_keep] = 0 # unshuffle to get the binary mask mask = torch.gather(mask, dim=1, index=ids_restore) return x_masked, mask, ids_restore
[docs] def forward(self, x): B = x.shape[0] x = self.patch_embed(x)[0] # add pos embed w/o cls token x = x + self.pos_embed[:, 1:, :] # masking: length -> length * mask_ratio x, mask, ids_restore = self.random_masking(x, self.mask_ratio) # append cls token cls_token = self.cls_token + self.pos_embed[:, :1, :] cls_tokens = cls_token.expand(B, -1, -1) x = torch.cat((cls_tokens, x), dim=1) x = self.drop_after_pos(x) for i, layer in enumerate(self.layers): x = layer(x) if i == len(self.layers) - 1 and self.final_norm: x = self.norm1(x) return (x, mask, ids_restore)
Read the Docs v: 0.x
Versions
latest
stable
1.x
dev-1.x
0.x
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.