Shortcuts

Note

You are reading the documentation for MMSelfSup 0.x, which will soon be deprecated by the end of 2022. We recommend you upgrade to MMSelfSup 1.0.0rc versions to enjoy fruitful new features and better performance brought by OpenMMLab 2.0. Check out the changelog, code and documentation of MMSelfSup 1.0.0rc for more details.

Source code for mmselfsup.models.necks.cae_neck

# Copyright (c) OpenMMLab. All rights reserved.
from typing import Tuple

import torch
import torch.nn as nn
from mmcv.cnn import build_norm_layer
from mmcv.cnn.utils.weight_init import trunc_normal_
from mmcv.runner import BaseModule

from ..builder import NECKS
from ..utils import CAETransformerRegressorLayer, TransformerEncoderLayer


[docs]@NECKS.register_module() class CAENeck(BaseModule): """Neck for CAE Pre-training. This module construct the latent prediction regressor and the decoder for the latent prediction and final prediction. Args: patch_size (int): The patch size of each token. Defaults to 16. num_classes (int): The number of classes for final prediction. Defaults to 8192. embed_dims (int): The embed dims of latent feature in regressor and decoder. Defaults to 768. regressor_depth (int): The number of regressor blocks. Defaults to 6. decoder_depth (int): The number of decoder blocks. Defaults to 8. num_heads (int): The number of head in multi-head attention. Defaults to 12. mlp_ratio (int): The expand ratio of latent features in MLP. defaults to 4. qkv_bias (bool): Whether or not to use qkv bias. Defaults to True. qk_scale (float, optional): The scale applied to the results of qk. Defaults to None. drop_rate (float): The dropout rate. Defaults to 0. attn_drop_rate (float): The dropout rate in attention block. Defaults to 0. norm_cfg (dict): The config of normalization layer. Defaults to dict(type='LN', eps=1e-6). init_values (float, optional): The init value of gamma. Defaults to None. mask_tokens_num (int): The number of mask tokens. Defaults to 75. init_cfg (dict, optional): Initialization config dict. Defaults to None. """ def __init__(self, patch_size: int = 16, num_classes: int = 8192, embed_dims: int = 768, regressor_depth: int = 6, decoder_depth: int = 8, num_heads: int = 12, mlp_ratio: int = 4, qkv_bias: bool = True, qk_scale: float = None, drop_rate: float = 0., attn_drop_rate: float = 0., drop_path_rate: float = 0., norm_cfg: dict = dict(type='LN', eps=1e-6), init_values: float = None, mask_tokens_num: int = 75, init_cfg: dict = None) -> None: super().__init__(init_cfg=init_cfg) self.num_features = self.embed_dim = embed_dims self.patch_size = patch_size self.mask_token_num = mask_tokens_num # regressor regressor_drop_path_rates = [ x.item() for x in torch.linspace(0, drop_path_rate, regressor_depth) ] self.regressors = nn.ModuleList([ CAETransformerRegressorLayer( embed_dims=embed_dims, num_heads=num_heads, feedforward_channels=mlp_ratio * embed_dims, qkv_bias=qkv_bias, qk_scale=qk_scale, drop_rate=drop_rate, attn_drop_rate=attn_drop_rate, drop_path_rate=regressor_drop_path_rates[i], norm_cfg=norm_cfg, init_values=init_values) for i in range(regressor_depth) ]) # decoder decoder_drop_path_rates = [ x.item() for x in torch.linspace(0, drop_path_rate, decoder_depth) ] self.decoders = nn.ModuleList([ TransformerEncoderLayer( embed_dims=embed_dims, num_heads=num_heads, feedforward_channels=mlp_ratio * embed_dims, qkv_bias=qkv_bias, drop_rate=drop_rate, attn_drop_rate=attn_drop_rate, drop_path_rate=decoder_drop_path_rates[i], norm_cfg=norm_cfg, init_values=init_values) for i in range(decoder_depth) ]) _, self.norm_regressor = build_norm_layer( norm_cfg, embed_dims, postfix=2) _, self.norm_decoder = build_norm_layer( norm_cfg, embed_dims, postfix=2) self.head = nn.Linear( embed_dims, num_classes) if num_classes > 0 else nn.Identity() self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dims))
[docs] def init_weights(self) -> None: super(CAENeck, self).init_weights() self.apply(self._init_weights) trunc_normal_(self.mask_token, std=0.02) trunc_normal_(self.head.weight, std=0.02)
def _init_weights(self, m: nn.Module) -> None: if isinstance(m, nn.Linear): nn.init.xavier_uniform_(m.weight) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0)
[docs] def forward( self, x_unmasked: torch.Tensor, pos_embed_masked: torch.Tensor, pos_embed_unmasked: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: """Get the latent prediction and final prediction. Args: x_unmasked (torch.Tensor): Features of unmasked tokens. pos_embed_masked (torch.Tensor): Position embedding of masked tokens. pos_embed_unmasked (torch.Tensor): Position embedding of unmasked tokens. Returns: Tuple[torch.Tensor, torch.Tensor]: Final prediction and latent prediction. """ x_masked = self.mask_token.expand(x_unmasked.shape[0], self.mask_token_num, -1) # regressor for regressor in self.regressors: x_masked = regressor( x_masked, torch.cat([x_unmasked, x_masked], dim=1), pos_embed_masked, torch.cat([pos_embed_unmasked, pos_embed_masked], dim=1)) x_masked = self.norm_regressor(x_masked) latent_pred = x_masked # decoder x_masked = x_masked + pos_embed_masked for decoder in self.decoders: x_masked = decoder(x_masked) x_masked = self.norm_decoder(x_masked) logits = self.head(x_masked) return logits, latent_pred
Read the Docs v: 0.x
Versions
latest
stable
1.x
dev-1.x
0.x
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.