Shortcuts

注意

您正在阅读 MMSelfSup 0.x 版本的文档,而 MMSelfSup 0.x 版本将会在 2022 年末 开始逐步停止维护。我们建议您及时升级到 MMSelfSup 1.0.0rc 版本,享受由 OpenMMLab 2.0 带来的更多新特性和更佳的性能表现。阅读 MMSelfSup 1.0.0rc 的 发版日志, 代码文档 获取更多信息。

mmselfsup.models.algorithms.densecl 源代码

# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
from mmcv.utils.logging import logger_initialized, print_log

from mmselfsup.utils import (batch_shuffle_ddp, batch_unshuffle_ddp,
                             concat_all_gather)
from ..builder import ALGORITHMS, build_backbone, build_head, build_neck
from .base import BaseModel


[文档]@ALGORITHMS.register_module() class DenseCL(BaseModel): """DenseCL. Implementation of `Dense Contrastive Learning for Self-Supervised Visual Pre-Training <https://arxiv.org/abs/2011.09157>`_. Borrowed from the authors' code: `<https://github.com/WXinlong/DenseCL>`_. The loss_lambda warmup is in `core/hooks/densecl_hook.py`. Args: backbone (dict): Config dict for module of backbone. neck (dict): Config dict for module of deep features to compact feature vectors. Defaults to None. head (dict): Config dict for module of loss functions. Defaults to None. queue_len (int): Number of negative keys maintained in the queue. Defaults to 65536. feat_dim (int): Dimension of compact feature vectors. Defaults to 128. momentum (float): Momentum coefficient for the momentum-updated encoder. Defaults to 0.999. loss_lambda (float): Loss weight for the single and dense contrastive loss. Defaults to 0.5. """ def __init__(self, backbone, neck=None, head=None, queue_len=65536, feat_dim=128, momentum=0.999, loss_lambda=0.5, init_cfg=None, **kwargs): super(DenseCL, self).__init__(init_cfg) assert neck is not None self.encoder_q = nn.Sequential( build_backbone(backbone), build_neck(neck)) self.encoder_k = nn.Sequential( build_backbone(backbone), build_neck(neck)) self.backbone = self.encoder_q[0] assert head is not None self.head = build_head(head) self.queue_len = queue_len self.momentum = momentum self.loss_lambda = loss_lambda # create the queue self.register_buffer('queue', torch.randn(feat_dim, queue_len)) self.queue = nn.functional.normalize(self.queue, dim=0) self.register_buffer('queue_ptr', torch.zeros(1, dtype=torch.long)) # create the second queue for dense output self.register_buffer('queue2', torch.randn(feat_dim, queue_len)) self.queue2 = nn.functional.normalize(self.queue2, dim=0) self.register_buffer('queue2_ptr', torch.zeros(1, dtype=torch.long))
[文档] def init_weights(self): """Init weights and copy query encoder init weights to key encoder.""" super().init_weights() # Get the initialized logger, if not exist, # create a logger named `mmselfsup` logger_names = list(logger_initialized.keys()) logger_name = logger_names[0] if logger_names else 'mmselfsup' # log that key encoder is initialized by the query encoder print_log( 'Key encoder is initialized by the query encoder.', logger=logger_name) for param_q, param_k in zip(self.encoder_q.parameters(), self.encoder_k.parameters()): param_k.data.copy_(param_q.data) param_k.requires_grad = False
@torch.no_grad() def _momentum_update_key_encoder(self): """Momentum update of the key encoder.""" for param_q, param_k in zip(self.encoder_q.parameters(), self.encoder_k.parameters()): param_k.data = param_k.data * self.momentum + \ param_q.data * (1. - self.momentum) @torch.no_grad() def _dequeue_and_enqueue(self, keys): """Update queue.""" # gather keys before updating queue keys = concat_all_gather(keys) batch_size = keys.shape[0] ptr = int(self.queue_ptr) assert self.queue_len % batch_size == 0 # for simplicity # replace the keys at ptr (dequeue and enqueue) self.queue[:, ptr:ptr + batch_size] = keys.transpose(0, 1) ptr = (ptr + batch_size) % self.queue_len # move pointer self.queue_ptr[0] = ptr @torch.no_grad() def _dequeue_and_enqueue2(self, keys): """Update queue2.""" # gather keys before updating queue keys = concat_all_gather(keys) batch_size = keys.shape[0] ptr = int(self.queue2_ptr) assert self.queue_len % batch_size == 0 # for simplicity # replace the keys at ptr (dequeue and enqueue) self.queue2[:, ptr:ptr + batch_size] = keys.transpose(0, 1) ptr = (ptr + batch_size) % self.queue_len # move pointer self.queue2_ptr[0] = ptr
[文档] def extract_feat(self, img): """Function to extract features from backbone. Args: img (Tensor): Input images of shape (N, C, H, W). Typically these should be mean centered and std scaled. Returns: tuple[Tensor]: backbone outputs. """ x = self.backbone(img) return x
[文档] def forward_train(self, img, **kwargs): """Forward computation during training. Args: img (list[Tensor]): A list of input images with shape (N, C, H, W). Typically these should be mean centered and std scaled. Returns: dict[str, Tensor]: A dictionary of loss components. """ assert isinstance(img, list) im_q = img[0] im_k = img[1] # compute query features q_b = self.encoder_q[0](im_q) # backbone features q, q_grid, q2 = self.encoder_q[1](q_b) # queries: NxC; NxCxS^2 q_b = q_b[0] q_b = q_b.view(q_b.size(0), q_b.size(1), -1) q = nn.functional.normalize(q, dim=1) q2 = nn.functional.normalize(q2, dim=1) q_grid = nn.functional.normalize(q_grid, dim=1) q_b = nn.functional.normalize(q_b, dim=1) # compute key features with torch.no_grad(): # no gradient to keys # update the key encoder self._momentum_update_key_encoder() # shuffle for making use of BN im_k, idx_unshuffle = batch_shuffle_ddp(im_k) k_b = self.encoder_k[0](im_k) # backbone features k, k_grid, k2 = self.encoder_k[1](k_b) # keys: NxC; NxCxS^2 k_b = k_b[0] k_b = k_b.view(k_b.size(0), k_b.size(1), -1) k = nn.functional.normalize(k, dim=1) k2 = nn.functional.normalize(k2, dim=1) k_grid = nn.functional.normalize(k_grid, dim=1) k_b = nn.functional.normalize(k_b, dim=1) # undo shuffle k = batch_unshuffle_ddp(k, idx_unshuffle) k2 = batch_unshuffle_ddp(k2, idx_unshuffle) k_grid = batch_unshuffle_ddp(k_grid, idx_unshuffle) k_b = batch_unshuffle_ddp(k_b, idx_unshuffle) # compute logits # Einstein sum is more intuitive # positive logits: Nx1 l_pos = torch.einsum('nc,nc->n', [q, k]).unsqueeze(-1) # negative logits: NxK l_neg = torch.einsum('nc,ck->nk', [q, self.queue.clone().detach()]) # feat point set sim backbone_sim_matrix = torch.matmul(q_b.permute(0, 2, 1), k_b) densecl_sim_ind = backbone_sim_matrix.max(dim=2)[1] # NxS^2 indexed_k_grid = torch.gather(k_grid, 2, densecl_sim_ind.unsqueeze(1).expand( -1, k_grid.size(1), -1)) # NxCxS^2 densecl_sim_q = (q_grid * indexed_k_grid).sum(1) # NxS^2 # dense positive logits: NS^2X1 l_pos_dense = densecl_sim_q.view(-1).unsqueeze(-1) q_grid = q_grid.permute(0, 2, 1) q_grid = q_grid.reshape(-1, q_grid.size(2)) # dense negative logits: NS^2xK l_neg_dense = torch.einsum( 'nc,ck->nk', [q_grid, self.queue2.clone().detach()]) loss_single = self.head(l_pos, l_neg)['loss'] loss_dense = self.head(l_pos_dense, l_neg_dense)['loss'] losses = dict() losses['loss_single'] = loss_single * (1 - self.loss_lambda) losses['loss_dense'] = loss_dense * self.loss_lambda self._dequeue_and_enqueue(k) self._dequeue_and_enqueue2(k2) return losses
[文档] def forward_test(self, img, **kwargs): """Forward computation during test. Args: img (Tensor): Input of two concatenated images of shape (N, 2, C, H, W). Typically these should be mean centered and std scaled. Returns: dict(Tensor): A dictionary of normalized output features. """ im_q = img.contiguous() # compute query features # _, q_grid, _ = self.encoder_q(im_q) q_grid = self.extract_feat(im_q)[0] q_grid = q_grid.view(q_grid.size(0), q_grid.size(1), -1) q_grid = nn.functional.normalize(q_grid, dim=1) return None, q_grid, None
Read the Docs v: 0.x
Versions
latest
stable
1.x
dev-1.x
0.x
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.