Shortcuts

mmselfsup.models.utils.clip 源代码

# Copyright (c) OpenMMLab. All rights reserved.
# Modified from https://github.com/zejiangh/MILAN
from collections import OrderedDict
from typing import Optional, Tuple, Union

import numpy as np
import torch
from mmengine.logging import MMLogger
from torch import nn


class LayerNorm(nn.LayerNorm):
    """Subclass torch's LayerNorm to handle fp16."""

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """Forward function."""
        orig_type = x.dtype
        ret = super().forward(x.type(torch.float32))
        return ret.type(orig_type)


class QuickGELU(nn.Module):
    """A faster version of GELU."""

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """Forward function."""
        return x * torch.sigmoid(1.702 * x)


class ResidualAttentionBlock(nn.Module):
    """Residual Attention Block (RAB).

    This module implements the same function as the MultiheadAttention in
    MMClassification, but with a different interface, which is mainly used
    in CLIP.

    Args:
        d_model (int): The feature dimension.
        n_head (int): The number of attention heads.
        attn_mask (torch.Tensor, optional): The attention mask.
            Defaults to None.
    """

    def __init__(self,
                 d_model: int,
                 n_head: int,
                 attn_mask: Optional[torch.Tensor] = None,
                 return_attention: bool = False) -> None:
        super().__init__()

        self.attn = nn.MultiheadAttention(d_model, n_head)
        self.ln_1 = LayerNorm(d_model)
        self.mlp = nn.Sequential(
            OrderedDict([('c_fc', nn.Linear(d_model, d_model * 4)),
                         ('gelu', QuickGELU()),
                         ('c_proj', nn.Linear(d_model * 4, d_model))]))
        self.ln_2 = LayerNorm(d_model)
        self.attn_mask = attn_mask

        self.return_attention = return_attention

    def attention(self, x: torch.Tensor) -> torch.Tensor:
        """Attention function."""
        self.attn_mask = self.attn_mask.to(
            dtype=x.dtype,
            device=x.device) if self.attn_mask is not None else None
        if self.return_attention:
            return self.attn(
                x,
                x,
                x,
                need_weights=self.return_attention,
                attn_mask=self.attn_mask)
        else:
            return self.attn(
                x,
                x,
                x,
                need_weights=self.return_attention,
                attn_mask=self.attn_mask)[0]

    def forward(
        self, x: torch.Tensor
    ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
        """Forward function."""
        if self.return_attention:
            x_, attention = self.attention(self.ln_1(x))
            x = x + x_
            x = x + self.mlp(self.ln_2(x))
            return x, attention
        else:
            x = x + self.attention(self.ln_1(x))
            x = x + self.mlp(self.ln_2(x))
            return x


class Transformer(nn.Module):
    """Transformer.

    Both visual and text branches use this transformer.

    Args:
        width (int): The feature dimension.
        layers (int): The number of layers.
        heads (int): The number of attention heads.
        attn_mask (torch.Tensor, optional): The attention mask.
    """

    def __init__(self,
                 width: int,
                 layers: int,
                 heads: int,
                 attn_mask: Optional[torch.Tensor] = None) -> None:
        super().__init__()
        self.width = width
        self.layers = layers
        self.resblocks = nn.ModuleList()
        for _ in range(layers - 1):
            self.resblocks.append(
                ResidualAttentionBlock(width, heads, attn_mask))
        self.resblocks.append(
            ResidualAttentionBlock(
                width, heads, attn_mask, return_attention=True))

    def forward(
            self, x: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        """Forward function."""
        z = []
        for idx, blk in enumerate(self.resblocks):
            if idx < self.layers - 1:
                x = blk(x)
                z.append(x.permute(1, 0, 2))
            else:
                x, attention = blk(x)
                z.append(x.permute(1, 0, 2))
        return x, attention, z


class VisionTransformer(nn.Module):
    """Vision Transformer for CLIP.

    Args:
        input_resolution (int): The image size.
        patch_size (int): The patch size.
        width (int): The feature dimension.
        layers (int): The number of layers.
        heads (int): The number of attention heads.
        out_dim (int): The output dimension.
        fineturn (bool): Whether to fineturn the model.
        average_target (bool): Whether to average the target.
    """

    def __init__(self,
                 input_resolution: int,
                 patch_size: int,
                 width: int,
                 layers: int,
                 heads: int,
                 output_dim: int,
                 finetune=False,
                 average_targets: int = 1) -> None:
        super().__init__()
        self.input_resolution = input_resolution
        self.output_dim = output_dim
        self.conv1 = nn.Conv2d(
            in_channels=3,
            out_channels=width,
            kernel_size=patch_size,
            stride=patch_size,
            bias=False)

        scale = width**-0.5
        self.class_embedding = nn.Parameter(scale * torch.randn(width))
        self.positional_embedding = nn.Parameter(scale * torch.randn(
            (input_resolution // patch_size)**2 + 1, width))
        self.ln_pre = LayerNorm(width)

        self.transformer = Transformer(width, layers, heads)

        self.finetune = finetune
        if finetune is False:
            self.ln_post = LayerNorm(width)
            self.proj = nn.Parameter(scale * torch.randn(width, output_dim))

        self.average_targets = average_targets

    def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        """Forward function."""
        x = self.conv1(x)  # shape = [*, width, grid, grid]
        x = x.reshape(x.shape[0], x.shape[1],
                      -1)  # shape = [*, width, grid ** 2]
        x = x.permute(0, 2, 1)  # shape = [*, grid ** 2, width]
        x = torch.cat([
            self.class_embedding.to(x.dtype) + torch.zeros(
                x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x
        ],
                      dim=1)  # shape = [*, grid ** 2 + 1, width]
        x = x + self.positional_embedding.to(x.dtype)
        x = self.ln_pre(x)

        x = x.permute(1, 0, 2)  # NLD -> LND
        x, attention, z = self.transformer(x)
        x = x.permute(1, 0, 2)  # LND -> NLD

        x = self.ln_post(x)
        if self.proj is not None:
            x = x @ self.proj

        return x, attention


class CLIP(nn.Module):
    """CLIP.

    Args:
        embed_dim (int): The embedding dimension.
        image_resolution (int): The image size.
        vision_layers (int): The number of layers in the vision transformer.
        vision_width (int): The feature dimension in the vision transformer.
        vision_patch_size (int): The patch size in the vision transformer.
        context_length (int): The context length.
        vocab_size (int): The vocabulary size.
        transformer_width (int): The feature dimension in the text transformer.
        transformer_heads (int): The number of attention heads in the
            text transformer.
        transformer_layers (int): The number of layers in the text transformer.
        fineturn (bool): Whether to fineturn the model.
        average_target (bool): Whether to average the target.
    """

    def __init__(
        self,
        embed_dim: int,
        image_resolution: int,
        vision_layers: Union[Tuple[int, int, int, int], int],
        vision_width: int,
        vision_patch_size: int,
        context_length: int,
        vocab_size: int,
        transformer_width: int,
        transformer_heads: int,
        transformer_layers: int,
        finetune: bool = False,
        average_targets: int = 1,
    ) -> None:
        super().__init__()

        self.context_length = context_length

        vision_heads = vision_width // 64
        self.visual = VisionTransformer(
            input_resolution=image_resolution,
            patch_size=vision_patch_size,
            width=vision_width,
            layers=vision_layers,
            heads=vision_heads,
            output_dim=embed_dim,
            finetune=finetune,
            average_targets=average_targets,
        )

        self.transformer = Transformer(
            width=transformer_width,
            layers=transformer_layers,
            heads=transformer_heads,
            attn_mask=self.build_attention_mask())

        self.vocab_size = vocab_size
        self.token_embedding = nn.Embedding(vocab_size, transformer_width)
        self.positional_embedding = nn.Parameter(
            torch.empty(self.context_length, transformer_width))
        self.ln_final = LayerNorm(transformer_width)

        self.text_projection = nn.Parameter(
            torch.empty(transformer_width, embed_dim))
        self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))

        self.initialize_parameters()

    def initialize_parameters(self) -> None:
        """Initialize the parameters.

        The pretrained weight will override the initialized parameters by this
        function.
        """
        nn.init.normal_(self.token_embedding.weight, std=0.02)
        nn.init.normal_(self.positional_embedding, std=0.01)

        proj_std = (self.transformer.width**-0.5) * (
            (2 * self.transformer.layers)**-0.5)
        attn_std = self.transformer.width**-0.5
        fc_std = (2 * self.transformer.width)**-0.5
        for block in self.transformer.resblocks:
            nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
            nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
            nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
            nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)

        if self.text_projection is not None:
            nn.init.normal_(
                self.text_projection, std=self.transformer.width**-0.5)

    def build_attention_mask(self) -> torch.Tensor:
        """Build the attention mask."""
        # lazily create causal attention mask, with full attention between the
        # vision tokens pytorch uses additive attention mask; fill with -inf
        mask = torch.empty(self.context_length, self.context_length)
        mask.fill_(float('-inf'))
        mask.triu_(1)  # zero out the lower diagonal
        return mask

    @property
    def dtype(self) -> torch.dtype:
        """Get the dtype."""
        return self.visual.conv1.weight.dtype

    def encode_image(self,
                     image: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        """Encode the image.

        Get the feature and attention mask from the last layer of the visual
        branch of CLIP.

        Args:
            image (torch.Tensor): The image tensor with shape NCHW.

        Returns:
            Tuple[torch.Tensor, torch.Tensor]: The feature and attention mask.
        """
        return self.visual(image.type(self.dtype))


[文档]def build_clip_model(state_dict: dict, finetune: bool = False, average_targets: int = 1) -> nn.Module: """Build the CLIP model. Args: state_dict (dict): The pretrained state dict. finetune (bool): Whether to fineturn the model. average_targets (bool): Whether to average the target. Returns: nn.Module: The CLIP model. """ vit = 'visual.proj' in state_dict if vit: vision_width = state_dict['visual.conv1.weight'].shape[0] vision_layers = len([ k for k in state_dict.keys() if k.startswith('visual.') and k.endswith('.attn.in_proj_weight') ]) vision_patch_size = state_dict['visual.conv1.weight'].shape[-1] grid_size = round( (state_dict['visual.positional_embedding'].shape[0] - 1)**0.5) image_resolution = vision_patch_size * grid_size embed_dim = state_dict['text_projection'].shape[1] context_length = state_dict['positional_embedding'].shape[0] vocab_size = state_dict['token_embedding.weight'].shape[0] transformer_width = state_dict['ln_final.weight'].shape[0] transformer_heads = transformer_width // 64 transformer_layers = len( set( k.split('.')[2] for k in state_dict if k.startswith('transformer.resblocks'))) model = CLIP( embed_dim, image_resolution, vision_layers, vision_width, vision_patch_size, context_length, vocab_size, transformer_width, transformer_heads, transformer_layers, finetune, average_targets, ) for key in ['input_resolution', 'context_length', 'vocab_size']: if key in state_dict: del state_dict[key] msg = model.load_state_dict(state_dict, strict=False) MMLogger.get_current_instance().info(f'Load CLIP model: {msg}') return model.eval()
Read the Docs v: dev-1.x
Versions
latest
stable
1.x
dev-1.x
dev
Downloads
pdf
html
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.