Shortcuts

mmselfsup.models.backbones.simmim_swin 源代码

# Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional, Sequence, Tuple, Union

import torch
import torch.nn as nn
from mmcls.models import SwinTransformer
from mmengine.model.weight_init import trunc_normal_

from mmselfsup.registry import MODELS


[文档]@MODELS.register_module() class SimMIMSwinTransformer(SwinTransformer): """Swin Transformer for SimMIM. Args: Args: arch (str | dict): Swin Transformer architecture Defaults to 'T'. img_size (int | tuple): The size of input image. Defaults to 224. in_channels (int): The num of input channels. Defaults to 3. drop_rate (float): Dropout rate after embedding. Defaults to 0. drop_path_rate (float): Stochastic depth rate. Defaults to 0.1. out_indices (tuple): Layers to be outputted. Defaults to (3, ). use_abs_pos_embed (bool): If True, add absolute position embedding to the patch embedding. Defaults to False. with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Defaults to False. frozen_stages (int): Stages to be frozen (stop grad and set eval mode). -1 means not freezing any parameters. Defaults to -1. norm_eval (bool): Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm and its variants only. Defaults to False. norm_cfg (dict): Config dict for normalization layer at end of backone. Defaults to dict(type='LN') stage_cfgs (Sequence | dict): Extra config dict for each stage. Defaults to empty dict. patch_cfg (dict): Extra config dict for patch embedding. Defaults to empty dict. pad_small_map (bool): If True, pad the small feature map to the window size, which is common used in detection and segmentation. If False, avoid shifting window and shrink the window size to the size of feature map, which is common used in classification. Defaults to False. init_cfg (dict, optional): The Config for initialization. Defaults to None. """ def __init__(self, arch: Union[str, dict] = 'T', img_size: Union[Tuple[int, int], int] = 224, in_channels: int = 3, drop_rate: float = 0., drop_path_rate: float = 0.1, out_indices: tuple = (3, ), use_abs_pos_embed: bool = False, with_cp: bool = False, frozen_stages: bool = -1, norm_eval: bool = False, norm_cfg: dict = dict(type='LN'), stage_cfgs: Union[Sequence, dict] = dict(), patch_cfg: dict = dict(), pad_small_map: bool = False, init_cfg: Optional[dict] = None) -> None: super().__init__( arch=arch, img_size=img_size, in_channels=in_channels, drop_rate=drop_rate, drop_path_rate=drop_path_rate, out_indices=out_indices, use_abs_pos_embed=use_abs_pos_embed, with_cp=with_cp, frozen_stages=frozen_stages, norm_eval=norm_eval, norm_cfg=norm_cfg, stage_cfgs=stage_cfgs, patch_cfg=patch_cfg, pad_small_map=pad_small_map, init_cfg=init_cfg) self.mask_token = nn.Parameter(torch.zeros(1, 1, self.embed_dims))
[文档] def init_weights(self) -> None: """Initialize weights.""" super().init_weights() if (isinstance(self.init_cfg, dict) and self.init_cfg['type'] == 'Pretrained'): # Suppress default init if use pretrained model. return if self.use_abs_pos_embed: trunc_normal_(self.absolute_pos_embed, std=0.02) trunc_normal_(self.mask_token, mean=0, std=.02) self.apply(self._init_weights)
def _init_weights(self, m): """Initialize weights.""" if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0)
[文档] def forward(self, x: torch.Tensor, mask: torch.Tensor) -> Sequence[torch.Tensor]: """Generate features for masked images. This function generates mask images and get the hidden features for them. Args: x (torch.Tensor): Input images. mask (torch.Tensor): Masks used to construct masked images. Returns: tuple: A tuple containing features from multi-stages. """ x, hw_shape = self.patch_embed(x) assert mask is not None B, L, _ = x.shape mask_token = self.mask_token.expand(B, L, -1) w = mask.flatten(1).unsqueeze(-1).type_as(mask_token) x = x * (1. - w) + mask_token * w if self.use_abs_pos_embed: x = x + self.absolute_pos_embed x = self.drop_after_pos(x) outs = [] for i, stage in enumerate(self.stages): x, hw_shape = stage(x, hw_shape) if i in self.out_indices: norm_layer = getattr(self, f'norm{i}') out = norm_layer(x) out = out.view(-1, *hw_shape, stage.out_channels).permute(0, 3, 1, 2).contiguous() outs.append(out) return tuple(outs)
Read the Docs v: latest
Versions
latest
stable
1.x
0.x
dev-1.x
Downloads
pdf
html
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.